

Available online at www.sciencedirect.com

JOURNAL OF SOLID STATE CHEMISTRY

Journal of Solid State Chemistry 179 (2006) 1363-1368

www.elsevier.com/locate/jssc

Single crystal structure and Raman spectrum of Ba₃Na₂(CN₂)₄

Yongkwan Dong, Francis J. DiSalvo*

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA

Received 8 December 2005; received in revised form 26 January 2006; accepted 27 January 2006

Available online 28 February 2006

Abstract

The synthesis, single crystal structure determination, and Raman spectrum are reported for colorless transparent tribarium disodium tetracyanamide, Ba₃Na₂(CN₂)₄. The title compound crystallizes in the space group C_{2h}^{5} - P_{2l}/c (#14, a = 6.2872(5) Å, b = 10.0002(8) Å, c = 17.7303(16) Å, $\beta = 110.454(4)^{\circ}$, V = 1044.48(15) Å³, Z = 4, R/wR = 0.0266/0.0543). Each sodium atom is surrounded by six nitrogen atoms in octahedral geometry. Sodium centered nitrogen octahedra are linked through face-sharing along the [100] direction to form one-dimensional (1D) chains. These chains are connected to each other through the carbon atoms of cyanamide and make a three-dimensional (3D) network with 1D channels along the [100] direction. Barium atoms and additional cyanamide anions reside in the channels. Each barium atom is irregularly coordinated with nitrogen and carbon from the cyanamide anions. The Raman spectrum shows symmetric vibrations of $[N = C = N]^{2-}$ corresponding to v_{sym} (1241.5 cm⁻¹) and 2δ (1356.4 cm⁻¹).

Keywords: Barium; Sodium; Cyanamide; Crystal structure; Raman spectrum

1. Introduction

Subnitrides containing alkali and alkaline-earth metals such as NaBa₃N [1], Na₅Ba₃N [2], and Na₁₆Ba₆N [3] have attracted attention because of their unusual physical and chemical properties. The structure of these compounds can be described as a metallic region of Na separated by isolated [Ba₆N] octahedra or infinite $^1_\infty$ [Ba₃N] chains with Ba–N ionic bonding. From theoretical studies [4], these compounds are expected to be metallic due to Na–Na and Na–Ba metallic bonding.

In ternary or quaternary subnitrides containing gallium or indium, these metals form isolated Zintl anions instead of bonding to N atoms. The variety of M (M = Ga, In) arrangements extend to isolated M atoms [5], isolated cluster units such as $[In_4]^{8-}$, $[Ga_5]^{7-}$, $[In_5]^{5-}$, and $[In_8]^{12-}$ [6–10], 1D infinite zigzag chains or cluster chains [11–15], and a 3D network of corner-sharing tetracapped tetrahedra [16]. NaSnN [17], which has been synthesized from a NaSn intermetallic phase under flowing NH₃ gas (ammonolysis), shows a novel layered Zintl anion [SnN]⁻ with Sn–N

Cyanamide compounds [18–20] are sometimes obtained unintentionally due to carbon impurities in reaction tubes (Nb or Ni container) or in one or more of the reactants. However, recently cyanamide and its salts have fascinated attention due to their solid-state coordination chemistry as well as molecular chemistry. Up to now, while binary cyanamides, $M_x(\text{CN}_2)_y$ (M is usually alkali, alkaline earth, or main-group elements), have been synthesized and structurally characterized, known ternary cyanamides are rare. Here we report the single-crystal structure and Raman spectrum of the ternary cyanamide, Ba₃Na₂(CN₂)₄.

2. Experimental section

2.1. Synthesis

All manipulations were performed in an argon-filled glovebox. In an attempt to prepare new multinary nitrides using Sn as a reactant and as a flux, the compound

bonding. Sn also can act like Ga or In in Zintl-like phases. For this reason, we were interested to extend subnitride chemistry to Sn containing nitrides. In attempts to synthesize a quaternary sodium—barium—tin-nitride, we obtained the title compound as a by-product.

^{*}Corresponding author. Fax: +16072554137. *E-mail address*: fjd3@cornell.edu (F.J. DiSalvo).

Ba₃Na₂(CN₂)₄ was obtained by the reaction of Ba(N₃)₂ and NaN₃. The starting materials of 0.1107 g of Ba(N₃)₂ [21], 0.1187 g of Sn (JohnsonMatthey, 99.9%), and 0.0325 g of NaN₃ (Aldrich, 99%) were placed into a Nb tube which was made by welding one end of a Nb tube in an argon atmosphere, using a Centorr Associates arc furnace. The atomic ratio of Ba/Na/Sn was 1:1:2. After the remaining end of the Nb tube was welded closed, the reaction tube was put into silica container and sealed under vacuum to prevent oxidation of the reaction tube during heating. The reaction tube was heated gradually to 800 °C over 24 h and held at this temperature for 72 h. The tube was cooled to room temperature at 3 °C/h. Metallic block crystals and only one colorless transparent needle crystal were found in the batch. The former crystals were the major phase and proved to be Ba₃Sn₅ [22] by means of single crystal diffraction. The title compound is somewhat air sensitive but is stable in polybutene oil over several days.

Unfortunately, single-phase material could not be obtained by changing the starting materials such as Ba₂N, NaN₃, and C or BaCN₂ and Na₂CN₂ or the reaction temperature. It is likely that the carbon in the cyanamide anions comes adventitiously from the niobium tube or one or more starting reactants as mentioned by Reckeweg and DiSalvo [18].

2.2. Crystallographic studies

Samples of the reaction mixture were removed from the glovebox in polybutene oil for single-crystal selection. The colorless transparent needle crystal was manually selected from the reaction mixture, mounted in a drop of polybutene oil sustained in a plastic loop, and placed onto the goniometer. A cold stream of nitrogen froze the polybutene oil, thus keeping the crystal stationary and protected from oxygen and moisture in the air.

Preliminary examination and data collection were performed on a Bruker X8 Apex II diffractometer equipped with 4K CCD detector and graphite-monochromatized MoKα radiation ($\lambda = 0.7107 \,\text{Å}$). The initial monoclinic cell constants $(a = 6.2872(5) \text{ Å}, b = 10.0002(8) \text{ Å}, c = 16.6127(15) \text{ Å}, \beta =$ 90.314(4)°, and $V = 1044.5(2) \text{ Å}^3$) and orientation matrix were obtained by using APEX2 [23]. The program SAINT was used to integrate the data [24]. An empirical absorption correction was applied using SADABS [25]. The initial input file for solving the crystal structure was prepared by XPREP [26]. XPREP suggested only one possible space group, $P2_1/n$, for the crystal structure. The systematic absences (h0l: h + l =2n + 1 and 0k0 : k = 2n + 1) are consistent with the monoclinic space group, C_{2h}^{5} - $P2_{1}/n$. The distribution of normalized structure factor (*E*-values, $\langle E^2 - 1 \rangle = 0.959$) indicates that the structure should be centrosymmetric. However, after solving the crystal structure in $P2_1/n$, the ADDSYM algorithm in the PLATON program package suggested the standard setting for this space group $P2_1/c$ with the transformation matrix (100, 010, 101) for this structure [27,28]. The satisfactory refinement confirmed the choice of this space group. The

initial positions for all atoms were obtained by using direct methods in SHELXS97 [29] and the structure was refined by full-matrix least-squares techniques with the use of the SHELXL97 [29] in the WinGX program package [30]. The atomic parameters were standardized by using STRUCTURE TIDY [31]. The final cycle of refinement performed on F_0^2 with 5015 unique reflections afforded residuals $wR_2 = 0.0543$ and a conventional R index based on 3805 reflections having $F_0^2 > 2\sigma$ (F_0^2) of 0.0266. The highest peak and deepest hole are located 1.13 and 0.60 Å from atoms Ba2 and Ba3, respectively, and are due to data truncation errors ($2\theta_{\text{max}} = 72.5^{\circ}$). Additional crystallographic details are described in Table 1. Atomic coordinates as well as isotropic displacement coefficients are listed in Table 2. Final anisotropic displacement parameters and selected bond distances and angles are given in Tables 3 and 4, respectively. Further details of the crystal structure investigation can be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49 7247 808 666; E-mail: crysdata@fiz-karlsruhe.de) on quoting the depository number CSD-416033.

2.3. Raman spectroscopy and microprobe analysis

After the X-ray diffraction measurements, the crystal was retrieved for elemental analysis and a vibrational study. A microprobe analysis of the colorless transparent needle crystal was made with an EDAX (Thermonoran) equipped scanning electron microscope (Jeol JXA-8900R). EDAX analysis of this crystal indicated the presence of Ba, and Na and no other elements were detected with $Z \geqslant 10$. To prevent decomposition of the sample, the title

Table 1
Details of X-ray data collection and refinement for Ba₃Na₂(CN₂)₄

Formula weight (amu)	618.12
Space group	$C_{2h}^{5} - P2_1/c \ (\#14)$
a (Å)	6.2872(5)
b (Å)	10.0002(8)
c (Å)	17.7303(16)
β (deg)	110.454(4)
$V(\mathring{A}^3)$	1044.48(15)
Z	4
T(K)	167.0(1)
Radiation	Graphite monochromated
	$MoK\alpha \ (\lambda(K\alpha) = 0.7107 \text{ Å})$
Linear absorption coefficient (mm ⁻¹)	11.253
Density (calc. g/cm ³)	3.931
Crystal size (mm ³)	$0.28 \times 0.04 \times 0.04$
θ limits (deg)	$2.38^{\circ} \leq \theta \leq 36.23^{\circ}$
Data collected	$-10 \le h \le 10, -16 \le k \le 16,$
	$-29 \leqslant l \leqslant 27$
No. of unique data with F_0^2	$5015 (R_{\text{int}} = 0.0462)$
No. of parameters	157
No. of unique data with $F_o^2 > 2\sigma$ (F_o^2)	3805
$WR_2 (F_0^2 > 0)$	0.0543
$R_1 \text{ (on } F_0 \text{ for } F_0^2 > 2\sigma (F_0^2))$	0.0266
Goodness-of-fit on F^2	0.986
Min. and max. residual e-density (e/\mathring{A}^3)	-2.619 and 1.884

Download English Version:

https://daneshyari.com/en/article/1332855

Download Persian Version:

https://daneshyari.com/article/1332855

<u>Daneshyari.com</u>