

Available online at www.sciencedirect.com



Journal of Solid State Chemistry 179 (2006) 1486-1489

JOURNAL OF SOLID STATE CHEMISTRY

www.elsevier.com/locate/jssc

# Zirconium scandium oxide nitrides: Formation and decomposition followed in situ by XRD and thermal analysis

N.J. Martinez Meta, E. Schweda\*

Universität Tübingen, Institut für Anorganische Chemie, Auf der Morgenstelle 18, D-72076 Tübingen, Germany

Received 18 November 2005; received in revised form 30 January 2006; accepted 31 January 2006 Available online 9 March 2006

#### Abstract

The dark green powder of  $Zr_{50}Sc_{12}O_{43}N_{50}$  was produced from  $Zr_{50}Sc_{12}O_{118}$  under a constant flow of ammonia.  $Zr_{50}Sc_{12}O_{43}N_{50}$  crystallizes cubic with space group  $Ia\bar{3}$  and a = 1009.254(3) pm in the  $C-M_2O_3$  structure (bixbyite structure). The reaction path was followed by in situ X-ray diffraction and showed that the substitution of  $3O^{2-}$  by  $2N^{3-}$  generates additional vacancies on the anion sites in the fluorite basis structure. On the way to the bixbyite structure time- and temperature-controlled X-ray diffractograms revealed the known fluorite-related superstructures (i.e. the vacancy distribution) for the compositions  $M_{14}X_{26}$  and  $M_7X_{12}$ . The reverse process, i.e. the oxidation of the oxide nitride was followed in DTA/TG experiments exhibiting the different vacancy orderings at 420, 500 and 520 °C.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Nitridation; Zirconium scandium oxide nitrides; In situ study; Anion-deficient; Fluorite-related

# 1. Introduction

The reaction path for the nitridation of zirconia with ammonia is quite well characterized. Starting with ZrO<sub>2</sub>,  $Zr_{14}O_{22}N_4$  (*MX*<sub>1.86</sub> or *M*<sub>14</sub>*X*<sub>26</sub>; *M* = metal, *X* = O/N) and  $Zr_7O_8N_4$  ( $MX_{1.71}$  or  $M_7X_{12}$ ) are formed under ammonia at temperatures below 1000 °C. Finally, at around 1100 °C Zr<sub>2</sub>ON<sub>2</sub> ( $MX_{1.5}$  or  $M_2X_3$ —bixbyite structure) is formed [1]. The intermediate compounds, i.e. Zr<sub>14</sub>O<sub>22</sub>N<sub>4</sub> and Zr<sub>7</sub>O<sub>8</sub>N<sub>4</sub> crystallize in anion-deficient fluorite-related structures [2,3]. These structures exhibit the same vacancy ordering on the anion sites like  $Zr_{10}Sc_4O_{26}$  and  $Zr_3Sc_4O_{12}$  [4]. Therefore, it was interesting to investigate the influence of the degree of nitridation on the vacancy distribution in the Zr/Sc-oxide-nitrides. The starting material for this study on the nitridation of scandium-doped zirconia was an ordered phase namely  $Zr_{50}Sc_{12}O_{118}$  (*MX*<sub>1.9</sub> or *M*<sub>62</sub>*X*<sub>118</sub>) the so-called  $\beta$ -phase. Its structure was determined recently by Wurst et al. [5] and exhibits the most dilute ordered vacancy

E-mail address: eberhard.schweda@uni-tuebingen.de (E. Schweda).

0022-4596/\$ - see front matter  $\odot$  2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2006.01.076

distribution so far known for the anion-deficient-fluoriterelated phases.

# 2. Experimental

# 2.1. Synthesis of precursor materials

Zr<sub>50</sub>Sc<sub>12</sub>O<sub>118</sub> was prepared via a sol-gel method using ZrOCl<sub>2</sub> · 5H<sub>2</sub>O dissolved at 25 °C in water. The stoichiometric amount of Sc<sub>2</sub>O<sub>3</sub> in HNO<sub>3</sub> was added and also a mixture of ethyleneglycol and citric acid (50/50). The whole mixture was refluxed for 8 h until the formation of a gel. The gel was dried at 120 °C and then fired at 1200 °C for 72 h. Xray diffraction indicated phase-pure Zr<sub>50</sub>Sc<sub>12</sub>O<sub>118</sub>. Diffractograms for Zr<sub>50</sub>Sc<sub>12</sub>O<sub>118</sub>, Zr<sub>10</sub>Sc<sub>4</sub>O<sub>26</sub> and Zr<sub>3</sub>Sc<sub>4</sub>O<sub>12</sub> are shown in Fig. 1. The compound was then treated at 1100 °C under a constant flow of ammonia to yield after 80 h the dark green powder with nominal composition Zr<sub>50</sub>Sc<sub>12</sub>O<sub>43</sub>N<sub>50</sub>. The sample needs to be quenched rapidly under ammonia. Analysis of this oxide nitride was performed using hot-gas extraction methods and by calculation from the decomposition reaction in thermogravimetrical runs and yielded for  $Zr_{50}Sc_{12}O_{43}N_{50}$ : N = 10.1% (calc.: 10.78%).

<sup>\*</sup>Corresponding author. Fax: +497071292436.

# 2.2. Time- and temperature-resolved X-ray diffraction

Time- and temperature-resolved X-ray diffraction patterns were taken from a SIEMENS D5000  $\theta/\theta$  diffractometer and recorded with a position-sensitive detector (Braun OED 50M) with an aperture of 6°. The radiation used was Cu K $\alpha$ . The detector was moved with a step size of 0.015° in  $\theta$  and a step time of 10 s. Diffractograms were typically recorded in an angular range between 10 and 60° in  $2\theta$ . The resulting time for a single diffractogram was then about 22 min and for the whole pattern 7h. Figs. 2



Fig. 1. X-ray diffractograms showing the superstructure reflections to fluorite in the angular range  $2\theta = 10-32^{\circ}$  for (a)  $Zr_{50}Sc_{12}O_{118}$ , (b)  $Zr_{10}Sc_4O_{26}$  and (c)  $Zr_3Sc_4O_{12}$ . Indexing is given just for the strongest superstructure reflections. The strong reflection around 30.4° corresponds to fluorite (111).

and 3 show the parts of the diffractograms between 10 and  $31.5^{\circ}$  in  $2\theta$ . DTA and TG measurements were performed on a Netsch STA 409.

# 3. Results and discussion

### 3.1. The reaction of the $\beta$ -phase with $NH_3$

Pure  $Zr_{50}Sc_{12}O_{118}$  was used for the reaction with ammonia up to 780 °C. The diffractogram shown in Fig. 2 reveals at 500 °C the formation of the fluorite (111) reflection at  $2\theta = 30.4^{\circ}$  from its rhombohedral split in the low-temperature phase. This is in agreement with the known phase transition from the rhombohedral phase with vacancy ordering to the fluorite phase with a statistical vacancy distribution [6]. At 780 °C an ordered superstructure appears which can be recognized from its very small super-structure reflections at  $2\theta = 11.88$ , 18.62, 22.99, 23.88 and  $24.13^{\circ}$  appearing in addition to the  $(111)_{F}$  reflection. The diffraction pattern for this phase,  $Zr_{50}Sc_{12}O_{109}N_6$ , is similar to the one of  $Zr_{10}Sc_4O_{26}$ (compare Fig. 1 or [4]). Quenching from 780 to 25°C under ammonia atmosphere is necessary to prepare this phase. Cooling down slowly under a constant flow of ammonia shows the formation of a structure like  $\beta$ -phase.

If the same experiment is performed up to  $1000 \,^{\circ}\text{C}$  one will observe the same behaviour and then at  $800 \,^{\circ}\text{C}$  the formation of a phase isostructural to the  $M_7X_{12}$  fluorite superstructure type. Both the unit cells  $M_7X_{12}$  and  $M_{14}X_{26}$ differ only in the *c* lattice constant which is simply doubled for the latter compound. This can be seen in the diffractogram Fig. 3, where the superstructure reflection at  $2\theta = 11.256^{\circ}$  is only present as a very weak hump for two consecutive diffractograms at approximately 780  $^{\circ}\text{C}$ .



Fig. 2. Time- and temperature-controlled X-ray diffractogram (angular range  $2\theta = 10-31.5^{\circ}$ ) for the reaction of  $Zr_{50}Sc_{12}O_{118}$  with ammonia up to 780 °C showing the formation of  $Zr_{50}Sc_{12}O_{109}N_{6}$ .

Download English Version:

# https://daneshyari.com/en/article/1332871

Download Persian Version:

https://daneshyari.com/article/1332871

Daneshyari.com