

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Approach to thermal properties and electronic polarizability from average single bond strength in ZnO-Bi₂O₃-B₂O₃ glasses

Taisuke Inoue^a, Tsuyoshi Honma^a, Vesselin Dimitrov^b, Takayuki Komatsu^{a,*}

^a Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188, Japan ^b Department of Silicate Technology, University of Chemical Technology and Metallurgy, 8, Kl. Ohridski Blvd., Sofia 1756, Bulgaria

ARTICLE INFO

Article history: Received 8 June 2010 Received in revised form 2 October 2010 Accepted 16 October 2010 Available online 23 October 2010

Keywords: Electronic polarizability Optical basicity Glass transition temperature Single bond strength Raman spectra ZnO

ABSTRACT

The glass transition temperature (T_g), density, refractive index, Raman scattering spectra, and X-ray photoelectron spectra (XPS) for xZnO-yBi₂O₃-zB₂O₃ glasses (x=10-65, y=10-50, z=25-60 mol%) are measured to clarify the bonding and structure features of the glasses with large amounts of ZnO. The average electronic polarizability of oxide ions (α_{O2-}) and optical basicity (Λ) of the glasses estimated using Lorentz–Lorenz equation increase with increasing ZnO or Bi₂O₃ content, giving the values of α_{O2-} =1.963 Å³ and Λ =0.819 for 60ZnO-10Bi₂O₃-30B₂O₃ glass. The formation of B-O-Bi and B-O-Zn bridging bonds in the glass structure is suggested from Raman and XPS spectra. The average single bond strength (B_{M-O}) proposed by Dimitrov and Komatsu is applied to the glasses and is calculated using single bond strength of 150.6 kJ/mol for Zn-O bonds in ZnO₄ groups, 102.5 kJ/mol for Bi-O bonds in BiO₆ groups, 498 kJ/mol for B-O bonds in BO₃ groups, and 373 kJ/mol for B-O bonds in BO₄ groups. Good correlations are observed between T_g and B_{M-O} , Λ and B_{M-O} , and T_g and Λ , proposing that the average single bond strength is a good parameter for understanding thermal and optical properties of ZnO-Bi₂O₃-B₂O₃ glasses.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Zinc oxide (ZnO) is one of the important constituent components in the formation of oxide glasses, and in particular, it is known that glasses containing large amounts of ZnO have low melting temperatures. Because low melting glasses with large amounts of PbO, which have been used widely in various commercial devices, are now unfavorable from the environment point of view, the importance of low melting glasses with large amounts of ZnO and with no PbO is increasing largely. Indeed, for instance, ZnO-B₂O₃ glasses with high ZnO contents have been used as a sintering aid for the fabrication of low temperature co-fired ceramics [1,2]. Recently, Pinckney [3] succeeded in synthesizing of transparent crystallized glasses consisting of ZnO nanocrystals in K₂O-ZnO-Al₂O₃-SiO₂ glasses. Nagai et al. [4] succeeded in patterning lines consisting of ZnO crystals by laser irradiations in borosilicate glasses with a high ZnO content of 65.5 mol%. Glasses with high ZnO contents, therefore, are very attractive materials.

Many studies on the structure and properties of ZnO-containing glasses have been studied so far. However, information on the coordination and bonding states of Zn^{2+} ions in glasses with high ZnO contents is extremely poor. Almost 60 years ago, Sun [5] has

proposed the bond energy criterion for the glass formation based on the dissociation energy of the oxides. He reported the data for the single bond strength of a chemical bond M–O in an oxide MO_x obtained by dividing the dissociation energy of the oxide by the coordination number of the metal M. The data reported by Sun are well known among the glass scientists, because they provide a good basis for separating oxides into glass-formers, intermediates and modifiers. Recently, based on Sun's approach, Dimitrov and Komatsu [6] have proposed that the average single bond strength B_{M-O} of binary glass with general formula $xA_pO_q(1-x)B_rO_s$ could be expressed by the following equation:

$$B_{M-0} = xB_{A-0} + (1-x)B_{B-0} \tag{1}$$

where *x* is the mole fraction of A_pO_q , B_{A-O} and B_{B-O} are single bond strengths of *M*–O in the corresponding individual oxide. They demonstrated that there is a good correlation among electronic oxide polarizability (i.e., optical basicity) and average single bond strength of several oxide glasses including La₂O₃–P₂O₅, Na₂O–SiO₂, PbO–SiO₂, Na₂O–GeO₂, R_2 O–TeO₂ (R=Li, Na, K), Bi₂O₃–B₂O₃, Sb₂O₃–B₂O₃ glasses as well as some vanadate glasses [6–10]. That is, in general the electronic oxide polarizability increases with decreasing single bond strength of glasses. Since the pioneering works by Duffy and Ingram [11,12], it has been recognized that electronic polarizability is one of the most important properties of materials in the field of optics and electronics. The data reported by Dimitrov and Komatsu [6–10] propose a close link between optical

^{*} Corresponding author. Fax: +81 258 47 9300.

E-mail address: komatsu@mst.nagaokaut.ac.jp (T. Komatsu).

^{0022-4596/\$ -} see front matter \circledcirc 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2010.10.027

and thermodynamic properties of glasses. It is of interest to approach thermal properties and electronic polarizability of glasses with high ZnO contents from the point of view of average single bond strength.

In this study, we focus our attention on ZnO–Bi₂O₃–B₂O₃ glasses containing ZnO contents of 10–60 mol%. Since the first report by Dumbaugh [13] on Bi₂O₃-based glasses, it is well established that the addition of Bi₂O₃ has a strong effect on lowering of melting temperatures in glasses. It is also noted that glasses containing Bi₂O₃ exhibit large third order nonlinear optical susceptibilities $\chi^{(3)}$ of the order 10^{-11} esu [14,15]. Glasses based on the ZnO–Bi₂O₃–B₂O₃ system are, therefore, very interesting in the field of solid state materials science and technology. In the present study, we measured the glass transition temperature, density, refractive index, Raman scattering spectra, and X-ray photoelectron spectra (XPS) for ZnO–Bi₂O₃–B₂O₃ glasses and tried to characterize their thermal properties and electronic polarizability (optical basicity) from the point of view of average single bond strength.

2. Experimental

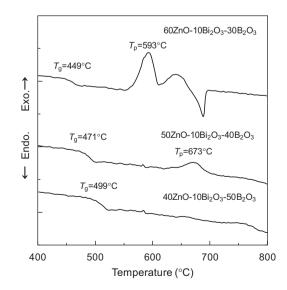
The chemical compositions of ZnO–Bi₂O₃–B₂O₃ glasses prepared in the present study are given in Table 1. Glasses were prepared using a conventional melt quenching technique. Commercial powders of reagent grade ZnO, Bi₂O₃, and H₃BO₃ were melted in a platinum crucible at 1000 °C for 30 min in an electric furnace. The melts were poured onto an iron plate and pressed to a thickness of ~1.5 mm by another iron plate. Glass transition temperatures (T_g) were determined using differential thermal analyses (DTA) at a heating rate of 10 K/min. Densities of glasses were determined with the Archimedes method using distilled water as an immersion liquid. Refractive indices at a wavelength of 632.8 nm (He–Ne laser) were measured at room temperature with a prism coupler (Metricon Model 2010).

Raman scattering spectra at room temperature for the glasses were measured with a laser microscope (Tokyo Instruments Co., Nanofinder) operated at Ar⁺ laser (wavelength: λ =488 nm). In this apparatus, the data below 250 cm⁻¹ cannot be measured due to the use of an edge filter. XPS measurements were carried out with a *JEOL JPS-9010TR* electron spectrometer which has Al conical anode for charge control. Non-monochromatic 240 W MgK α X-ray provided the excitation radiation. During experiments the pressure inside the analyzer chamber was about 10⁻⁷ Pa. The drift of the electron binding energy due to surface charging effect was

Table 1

Compositions, glass transition temperature T_{g} , density d, refractive index at 642.8 nm n, molar volume V_{m} , and atom packing density V_{p} for ZnO-Bi₂O₃-B₂O₃ glasses. The experimental uncertainties of T_{g} , d, and n are ± 2 °C, ± 0.003 g/cm³, and ± 0.001 , respectively.

-									
Composition (mol%)				T_{g} (°C)	$d (g/cm^3)$	n	$V_{\rm m}~({\rm cm^3/mol})$	$V_{\rm p}$	
	Sample	ZnO	Bi_2O_3	B ₂ O ₃					
	Glass A	30	10	60	515	4.209	1.748	26.80	0.583
	Glass B	40	10	50	499	4.529	1.784	25.17	0.574
	Glass C	50	10	40	471	4.842	1.815	23.78	0.557
	Glass D	60	10	30	449	5.152	1.851	22.58	0.534
	Glass E	65	10	25	440	5.292	1.870	22.10	0.519
	Glass F	30	20	50	482	5.445	1.895	27.99	0.578
	Glass G	40	20	40	462	5.688	1.933	27.01	0.555
	Glass H	50	20	30	435	5.964	1.968	25.95	0.532
	Glass I	20	30	50	440	5.993	1.986	31.85	0.563
	Glass J	30	30	40	421	6.192	2.021	31.01	0.539
	Glass K	40	30	30	398	6.497	2.059	29.75	0.522
	Glass L	20	40	40	397	6.798	2.095	33.91	0.545
	Glass M	10	50	40	376	7.151	2.155	37.61	0.537


calibrated by utilizing the C1s peak (binding energy=284.6 eV) of the contamination of the pumping oil at the sample introduction chamber.

3. Results and discussion

3.1. Glass transition temperature of glasses

The melt-quenched samples for all compositions of ZnO-Bi₂O₃-B₂O₃ examined in this study are optically transparent. The amorphous state in the as-quenched samples was confirmed from XRD patterns, in which halo patterns were observed. The DTA patterns for xZnO-10Bi₂O₃-(90-x)B₂O₃ glasses with x=40-60 are shown in Fig. 1 as examples. Endothermic peaks due to the glass transition were clearly observed, giving the values of T_g = 499 °C for the glass with x=40, $T_g=471$ °C for the glass with x=50, and $T_g=449$ °C for the glass with x = 60. In the glasses with x = 50 and 60, exothermic peaks due to the crystallization are observed, giving the crystallization peak temperatures (T_p) of $T_p=673$ °C for the glass with x=50 and $T_p=593$ °C for the glass with x=60. These results indicate that thermal stability against crystallization in xZnO- $10Bi_2O_3 - (90 - x)B_2O_3$ glasses decreases with the substitution of ZnO for B₂O₃. The endothermic peak due to the glass transition was observed in other glasses, and the values of T_{g} estimated from DTA curves are given in Table 1. The glasses of ZnO-Bi₂O₃-B₂O₃ show the values of T_g = 376–515 °C, and it is seen that the values of T_g decrease with increasing ZnO or Bi₂O₃ content and decreasing B₂O₃ content. For instance, the glass of 40ZnO-20Bi₂O₃-40B₂O₃ has the value of $T_g = 462$ °C, and the glass of $20ZnO - 40Bi_2O_3 - 40B_2O_3$ shows the value of T_g =397 °C. It should be, therefore, pointed out that Bi₂O₃ has a stronger effect for lowering the glass transition temperature, i.e., weakening the glass network structure, of ternary ZnO-Bi₂O₃-B₂O₃ glasses compared with ZnO.

The values of density, *d*, and refractive index, *n*, at room temperature for the glasses are given in Table 1. It is seen that both values increase with increasing ZnO or Bi₂O₃ content and decreasing B₂O₃ content. As similar to the glass transition temperature, Bi₂O₃ has a stronger effect for the density and refractive index compared with ZnO. For instance, the glass of 40ZnO-20Bi₂O₃-40B₂O₃ has the values of *d*=5.688 g/cm³ and *n*=1.933, and the glass of 20ZnO-40Bi₂O₃-40B₂O₃ shows the values of *d*=6.798 g/cm³ and *n*=2.155.

Fig. 1. DTA patterns for xZnO $-10Bi_2O_3-(90-x)B_2O_3$ glasses with x=40–60. Heating rate was 10 K/min.

Download English Version:

https://daneshyari.com/en/article/1333261

Download Persian Version:

https://daneshyari.com/article/1333261

Daneshyari.com