

Available online at www.sciencedirect.com

JOURNAL OF SOLID STATE CHEMISTRY

Journal of Solid State Chemistry 180 (2007) 1456-1463

www.elsevier.com/locate/jssc

Bi₂WO₆ photocatalytic films fabricated by layer-by-layer technique from Bi₂WO₆ nanoplates and its spectral selectivity

Shicheng Zhang^{a,*}, Jiandong Shen^a, Hongbo Fu^a, Weiyang Dong^a, Zhijian Zheng^a, Liyi Shi^b

^aDepartment of Environmental Science & Engineering, Fudan University, Shanghai 200433, PR China ^bResearch Center of Nano-Science and Nano-Technology, Shanghai University, Shanghai 200444, PR China

Received 3 December 2006; received in revised form 7 February 2007; accepted 18 February 2007 Available online 28 February 2007

Abstract

 Bi_2WO_6 multilayer films have been fabricated successfully by a layer-by-layer (LbL) technique from Bi_2WO_6 nanoplates, which show higher visible-light photoactivity ($\lambda > 420$ nm) than that of Bi_2WO_6 nanoplate powders and P25 TiO₂ films. The films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and UV–visible absorption spectroscopy. Photocatalytic activities of the films were evaluated by the rhodamine B (RhB) decomposition under UV and visible-light irradiation. Thickness and photoactivity of the film can be modified easily by changing the deposition cycles. Bi_2WO_6 films have the spectral selectivity of the photocatalytic degradation of RhB. Under the wavelength greater than 300 nm, the RhB molecules tend to be transformed to rhodamine over Bi_2WO_6 films selectively. However, in the case of shorter wavelength ($\lambda = 254$ nm) light irradiation, the RhB molecules can be photodegraded completely.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Bi₂WO₆; Nanoplates; Layer-by-layer; Photocatalysis; Rhodamine B; Spectral selectivity

1. Introduction

Semiconductor photocatalysts have attracted great interests for their application in the environmental remediation, water splitting, the fixation of CO₂ and N₂, and the photosynthesis of organic compounds [1–3]. TiO₂ has by far the most popular one for its higher photocatalytic activity, good photostability, non-toxicity, and low price. But the large bandgap of TiO₂ (3.2 eV) makes it necessary for excitation only by UV light with wavelengths below 387 nm, which limits the usage efficiency of solar energy (max. 5%) and hinders the commercialization of this technology. Therefore, in order to eliminate the drawback, exploitation of new visible-light-driven photocatalysts has received considerable attention.

In recent years, Bi_2WO_6 has been demonstrated to be a good visible-light-driven photocatalysts. Kudo and Hijii [4]

*Corresponding author. Fax: +862165642080.

E-mail address: zhangsc@fudan.edu.cn (S. Zhang).

first demonstrated the photocatalytic O₂ evolution over Bi₂WO₆ from AgNO₃ solution. Subsequently, Tang et al. [5] reported that Bi_2WO_6 was also active for photocatalytic mineralizing both CHCl₃ and CH₃CHO. More recently, we successfully enhanced its photocatalytic activity by synthesizing nanostructured Bi₂WO₆, i.e. the nanoplates by hydrothermal process [6-8], and the nanoparticles by calcining amorphous complex precursor [9]. Yu et al. [10] also prepared the Bi₂WO₆ nanoparticles by hydrothermal method. Especially, Bi2WO6 nanoplates show higher activity, and have the potential use in environmental remediation induced by solar energy. Unfortunately, Bi_2WO_6 has a bigger molecular weight than that of TiO₂, and is more difficult to be dispersed in aqueous solution, which is a drawback for heterogeneous photocatalysis by photocatalysts dispersion [8]. For the photocatalytic reaction is a surface reaction, in order to eliminate the previous drawback, it is essential to expose the surface of Bi_2WO_6 nanoplates to the contaminants and the light. The Bi_2WO_6 films should be one of the best choices.

^{0022-4596/\$ -} see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2007.02.013

Hamada et al. [11] epitaxially deposited Bi_2WO_6 films on Nb-doped SrTiO₃ substrate by pulsed laser deposition, and investigated the dielectric properties. Ishikawa et al. [12] deposited Bi_2WO_6 films by metalorganic chemical vapor deposition, and investigated the ferroelectricity. Recently, we have fabricated the Bi_2WO_6 films from amorphous complex precursor, and investigated the photoelectric properties [13]. However, to the best of our knowledge, there are still no reports about photocatalytic activity of Bi_2WO_6 films.

Layer-by-layer (LbL) technique by sequential adsorption of oppositely charged materials (ranged from polyelectrolytes to inorganic materials) is one of the most promising ways of fabricating multilayer thin films with precisely controlled composition, thickness, and architecture on a nanometer scale [14–23]. Recently, some researchers reported the photocatalytic films fabricated by LbL technique [24–28]. But few reports are about the fabrication of multilayer films of complex oxide visiblelight-driven photocatalysts.

Here, we reported the fabrication of Bi_2WO_6 films by sequential adsorption of Bi_2WO_6 nanosheets and polyelectrolytes, which showed higher photocatalytic activities under visible-light irradiation ($\lambda > 420$ nm). Thicknesses and photocatalytic activities of Bi_2WO_6 films were easily controlled by modifying the deposition layer numbers. The spectral selectivity of the rhodamine B (RhB) photodegradation on the surface of Bi_2WO_6 films was also discussed.

2. Experimental

2.1. Materials

Polyethylenimine (PEI), 50 wt% aqueous solutions, with molecular weight of 6×10^5 , was purchased from Aldrich Co. and used without further purification. All solutions were prepared from deionized water. All other solvents and chemicals were of reagent grade. P25 TiO₂ (ca. 80% anatase, 20% rutile; BET area ca. $50 \text{ m}^2 \text{ g}^{-1}$) was kindly supplied by Degussa Co.

 Bi_2WO_6 nanoplates were prepared by the hydrothermal synthesis according to the previous reports [6,7]. In a typical synthesis procedure, 5 mmol $Bi(NO_3)_2 \cdot 5H_2O$, 2.5 mmol H_2WO_4 , and 5 mmol KOH were added to 35 mL deionized water with magnetic stirring. The mixture was sealed in a Teflon-lined stainless steel autoclave and heated at 180 °C for 24 h. After cooling, the resulting samples were collected and washed with deionized water and dried at 80 °C in air.

2.2. LbL assembly

Deposition of the Bi_2WO_6 films by LbL technique was carried by the similar procedure as reported in other related studies [20], which was described as follows.

Quartz substrates were cleaned by 3:7 (vol%) H_2O_2/H_2SO_4 (piranha solution) at 100 °C for ca. 40 min, followed by sonication in deionized water for 1 h, and then extensive rinsed with deionized water [29]. After cleaning, the substrates were negatively charged. Bi₂WO₆ nanoplates were dispersed in deionized water to yield a 2 g L⁻¹ suspension, and the pH of the suspension was adjusted to 10 by 1 M KOH solution to create a negatively charged surface for Bi₂WO₆ nanoplates.

Substrates were primed by being treated with a PEI solution (2.5 g L^{-1}) to introduce the positive charge to the substrate surface. Primed substrates were dipped into Bi_2WO_6 nanoplates suspension to prepare a monolayer film by electrostatic deposition principle. Substrates and films were rinsed with water to remove the excessively adsorbed species and dried with air blow between the deposition steps. Repeating these layers produces *n* layers on the substrates.

As comparison, TiO_2 films were also prepared by the similar procedure. The TiO_2 (P25 TiO_2) suspension was 1 g L^{-1} , with the pH of 10.

2.3. Characterizations

XRD patterns were collected using a Rigaku Rint 2000S powder diffractometer with graphite monochromatized CuK α radiation ($\lambda = 0.15405$ nm). The surface morphology of LbL films was observed by field emission scanning electron microscopy (FE-SEM; JEOL, JSM-6700F). UV– visible absorption spectra for monolayer and multilayer films fabricated on a quartz-glass substrate were recorded using a ThermoSpectronic UV500 UV–visible spectrometer.

2.4. Photochemical experiments

Photocatalytic activities of the films were evaluated by the RhB decomposition under UV and visible-light irradiation. UV light was obtained by a 25 W Hg lamp ($\lambda = 254$ nm) and the average light intensity was 400 µW cm⁻². A 500 W xenon lamp (Beijing TrusTech Science and Technology Co.) and different cutoff filters ($\lambda > 300$ nm, $\lambda > 350$ nm, and $\lambda > 420$ nm) were used to obtain the desired irradiation. The average light intensity was 100 mW cm⁻². The radiant flux was measured with a photometer (International Light Model IL1400A).

Bi₂WO₆ or TiO₂ films were dipped into the RhB solution $(1 \times 10^{-5} \text{ M}, 50 \text{ mL})$ in a quartz vessel $(3 \times 3 \times 10 \text{ cm}^3)$ vertically. The light was irradiated from side and perpendicular to the surface of the films. The size of the films was about 2.5 × 2.5 cm². Air was bubbled into the reactor with a flow rate of 40 mL min⁻¹. At given time intervals, 1 mL aliquots were sampled, and analyzed by recording the variations of the absorption band maximum (554 nm) in the UV–visible spectrum of RhB using a ThermoSpectronic UV500 UV–visible spectrometer.

Download English Version:

https://daneshyari.com/en/article/1333304

Download Persian Version:

https://daneshyari.com/article/1333304

Daneshyari.com