

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 179 (2006) 2329-2338

JOURNAL OF SOLID STATE CHEMISTRY

www.elsevier.com/locate/jssc

Barrelane-like germanium clusters in Eu₃Ge₅: Crystal structure, chemical bonding and physical properties

Sergij Budnyk^a, Franz Weitzer^b, Christof Kubata^{c,d}, Yurii Prots^a, Lev G. Akselrud^e, Walter Schnelle^a, Kurt Hiebl^b, Reinhard Nesper^{c,d}, Frank R. Wagner^a, Yuri Grin^{a,*}

^aMax-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany

^bAG Neue Materialien, Universität Wien, Währingerstr. 42, 1090 Wien, Austria

^cLaboratorium für Anorganische Chemie, ETH Hönggerberg, HCI, 8093 Zürich, Switzerland

^dCollegium Helveticum, 3092 Zürich, Switzerland

^eInstitut of Inorganic Chemistry, University of Lviv, Kyrylo & Methody Str. 6, 79005 Lviv, Ukraine

Received 13 March 2006; received in revised form 3 May 2006; accepted 4 May 2006 Available online 16 May 2006

Dedicated to the occasion of the 75th birthday of Prof. Hans Georg von Schnering

Abstract

Formation and crystal structure of the binary germanide Eu_3Ge_5 were investigated in detail. The compound forms peritectically at 1008 °C and does not undergo any phase transition down to room temperature. The crystal structure was determined first from X-ray powder diffraction data and was later confirmed by single-crystal X-ray diffraction: structure type Pu_3Pd_5 , space group *Cmcm* (no. 63), a = 9.7675(4) Å, b = 7.9681(3) Å, c = 9.8562(3) Å. The main building blocks are Ge_5^{6-} cluster anions surrounded by Eu^{2+} cations. The nearly tetragonal-pyramidal shape is suggested by the interatomic distances. Contrary to that, the bonding analysis with the electron localization function (ELF) reveals only two- and three-bonded germanium atoms forming a strongly distorted [1.1.1]-barrelane-like cluster. Despite the formal electron deficiency, compared to the barrelane C_5H_8 , the electron counting in the cluster anion and its conformation cannot be interpreted applying the Wade's rules. In accordance with the calculated electronic density of states, Eu_3Ge_5 shows a metal-like temperature dependence of the electrical resistivity with a sharp change of $\rho(T)$ slope at the Néel point. Above the Néel point the inverse magnetic susceptibility reveals Curie–Weiss behavior with an effective moment of $8.11 \mu_B (Eu^{2+}, 4f^3 \text{ configuration})$ in agreement with the analysis of the chemical bonding. The $4f^3$ electronic configuration of europium is confirmed by $Eu-L_{III}$ X-ray absorption spectroscopy.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Europium germanide; Crystal structure; Magnetic behavior; Electrical resistivity; Bonding analysis; Electron localization function

1. Introduction

According to the literature data, the binary system europium–germanium seems to be rather simple compared to other rare-earth metals. The investigation of the phase diagram [1] shows the existence of five intermetallic compounds: Eu₃Ge, EuGe, Eu₂Ge₃, Eu₃Ge₅ and EuGe₂. The monogermanide EuGe adopts the crystal structure of the α -TII (CrB) type, space group *Cmcm*, Pearson symbol

*Corresponding author. Fax: +4935146464000.

E-mail address: grin@cpfs.mpg.de (Y. Grin).

oC8 [2–4]. The digermanide EuGe₂ was suggested to undergo a phase transition at 810 °C [1]. Its crystal structure belongs to an own structure type (space group $P\overline{3}m1$, Pearson symbol hP3) which has some similarity to CdI₂ [5]. This was confirmed in Ref. [6], but no phase transition was found. Eu₃Ge₅ was suggested to form peritectically and to exist in the temperature range between 755 and 1011 °C with a phase transformation at 810 °C [1]. The crystal structure of Eu₅Ge₃ was described as belonging to the Cr₅B₃ structure type (space group *I4/mcm*, Pearson symbol *tP*32 [7,8]). An additional binary germanide Eu₂Ge with the crystal structure of the PbCl₂ type (space group

^{0022-4596/\$ -} see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2006.05.008

Pnma, Pearson symbol oP12) was reported recently [9]. We suppose, that one of the two latter compounds corresponds to the previously found and structurally non-characterized phase Eu₃Ge [1]. The aim of this work is to shed more light on formation, crystal structure, transport and magnetic properties of Eu₃Ge₅, with a special emphasis on the chemical bonding.

2. Experimental

2.1. Preparation

The binary germanide Eu_3Ge_5 was observed primarily as by-product together with EuGe in a sample with the nominal composition Eu_3Ge_4 . This sample was prepared by heating the elements in a sealed niobium container for 4 h up to 840 °C, was then kept for 1 h at this temperature and finally cooled down to room temperature within 17 h. After re-grinding and compacting, the powder was additionally annealed at 880 °C for 24 h. A single crystal (called hereafter II) was obtained by mechanical fragmentation of the sample after annealing.

For a systematic investigation of the formation conditions, several samples with the nominal compositions Eu_xGe_{100-x} (x = 33.3, 35.0, 36.5, 37.5, 38.0, 38.5, 42.0 and 50.0) were prepared in sealed Ta tubes applying high frequency (HF) furnace using Eu (99.9 mass%, Lamprecht, distilled in vacuum prior to use) and Ge (99.9999 mass%, ChemPur) as starting components. All handlings were performed in a glove-box system in highly purified argon with monitored oxygen and H₂O levels lower than 0.1 ppm. After the HF heating the Ta crucibles were sealed in evacuated quartz tubes and annealed at several temperatures between 780 and 1000 °C for 3–4 weeks, respectively, to check possible phase transitions as reported in the literature. Finally, all samples were quenched by submerging the quartz tubes in cold water.

Well-crystallized specimens of Eu₃Ge₅ were obtained by using K-Ge flux. A starting mixture of elemental K, Eu and Ge in an atomic ratio of 2:1:2 (with a total mass of about 1.5 g) was sealed into a tantalum container under purified argon atmosphere. The container was heated up to 960 °C within 10 h, kept at this temperature for the next 5 h and slowly cooled down (10 °C/h) to room temperature. After heat treatment the sample contained numerous prism-like crystals embedded into a potassium matrix. X-ray powder diffraction pattern revealed reflections of Eu₃Ge₅ and K₄Ge₄. Excess of potassium monogermanide was removed by washing with ethanol. A single crystal (called hereafter I) was selected from the residual after washing. The crystals of Eu₃Ge₅ appeared to be stable against air and moisture for several days.

2.2. Characterization

Phase identification was performed by room temperature X-ray powder diffraction by the Guinier technique (Huber

Image Plate Camera G670, radiation, $CoK\alpha_1$, $\lambda = 1.78890$ Å or $CuK\alpha_1$, $\lambda = 1.54056$ Å $5^\circ \le 2\theta \le 100^\circ$, step width 0.005°, 6×30 min scans) using LaB₆ (a = 4.15962 Å) or Ge (a = 5.65735 Å) as internal standard. For the X-ray examination the powders were sealed between two polyimide foils as a general prevention against oxidation.

Differential thermal analysis (DTA) was performed in alumina or niobium crucibles in a protective argon atmosphere (Netzsch STA 409, heating rate 20 K/min). Differential scanning calorimetry (DSC) investigations were done in a Netzsch DSC 404C apparatus in sealed niobium crucibles. The peak onset temperature values were used for further interpretation.

Details of the single-crystal X-ray diffraction experiments are summarized in Table 1. Two different crystals (I and II, cf. *Preparation*) were investigated. All crystallographic calculations were made with the program packages WinCSD [10] and SHELXL [11].

The dc magnetization was measured in the temperature range 1.8-400 K in applied magnetic fields up to 7 T using a SQUID magnetometer MPMS XL-7 (Quantum Design). A dc Faraday pendulum magnetometer SUS-10 (A. Paar, Graz, Austria) has been applied for measurements at elevated temperatures (300–1125 K) in external fields up to 1.3 T.

Table 1

Crystallographic information, data collection and handling for Eu₃Ge₅

Crystal	I (twin)	II (non-twin)
Crystal size, mm ³	$0.040\times0.050\times0.055$	$0.080 \times 0.120 \times 0.120$
Space group	<i>Cmcm</i> (no. 63)	
Formula units/cell, Z	4	
Unit cell parameters ^a		
a (Å)	9.7675(4) ^a	9.796(1) ^b
b (Å)	7.9681(3) ^a	7.971(1) ^b
c (Å)	9.8562(3) ^a	9.851(1) ^b
$V(\text{\AA}^3)$	767.09(9) ^a	767.1(1) ^b
Calc. density (g/cm ³)	7.09	7.09
Diffractometer	Rigaku AFC7	Bruker Smart
		Platform
Detector	Mercury CCD	CCD
Radiation, λ	Mo <i>K</i> α, 0.71073 Å	Mo <i>K</i> α, 0.71073 Å
Absorpt. coeff, μ	43.3	43.3
(mm^{-1})		
Scans, step	$\varphi, \omega, 0.6^{\circ}$	Ω
2θ range up to	62.4°	68°
Ranges for h, k, l	$-13 \leq h \leq 13$	$-14 \leq h \leq 14$
	$-10 \le k \le 11$	$-12 \leq k \leq 12$
	$-14 \leq l \leq 14$	$-15 \leq l \leq 15$
N(hkl) measured	3687	5844
N(hkl) used for	3310	825
refinement ^c		
Refined parameters	28	27
$R(F), WR(F^2)^d$	0.028, 0.072	0.030, 0.076
Extinction parameter	0.0022(1)	0.00046(7)
Residual peaks (e/Å ³)	-2.03/3.42	-1.99/2.61

^aPowder diffraction data.

^bSingle crystal data.

^cFor a refinement of a twin, the data set was not merged.

^dThe residuals are defined as follows: $R(F) = \Sigma(|F_o| - |F_c|)/\Sigma |F_o|$; w $R(F^2) = \{\Sigma[w(F_o^2 - F_c^2)^2/\Sigma[w(F_o^2)^2]\}^{1/2}$. Download English Version:

https://daneshyari.com/en/article/1333504

Download Persian Version:

https://daneshyari.com/article/1333504

Daneshyari.com