

Available online at www.sciencedirect.com

JOURNAL OF SOLID STATE CHEMISTRY

Journal of Solid State Chemistry 180 (2007) 2500-2509

www.elsevier.com/locate/jssc

Solid state coordination chemistry of the oxofluorovanadium–diphosphonate system in the presence of Cu(II)–tetrapyridylpyrazine complex cations The crystal structures of [{Cu₂(tpyprz)(H₂O)₂}V₄FO₈(HO₃PCH₂PO₃)₂], [{Cu₂(tpyprz)(H₂O)₂}V₄F₆O₆(O₃PCH₂CH₂PO₃)], and [Cu₂(tpyprz){HO₃P(CH₂)₃PO₃H}][V₂F₂O₅] (tpyprz = tetra-4-pyridylpyrazine)

Wayne Ouellette^a, Vladimir Golub^b, Charles J. O'Connor^b, Jon Zubieta^{a,*}

^aDepartment of Chemistry, Syracuse University, Syracuse, NY 13244-4100, USA ^bAdvanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148, USA

Received 9 January 2007; received in revised form 14 June 2007; accepted 20 June 2007 Available online 30 June 2007

Abstract

The hydrothermal reactions of V₂O₅, Cu(CH₃CO₂)₂·H₂O, tetrapyridylpyrazine (tpyprz), HF and the appropriate diphosphonic acid yielded a series of compounds of the {Cu²(tpyprz)}⁴⁺/V_xO_yFⁿ⁻/{O₃P(CH₂)_nPO₃}⁴⁻ family of materials. The structure of [{Cu₂(tpyprz)(H₂O)₂}V₄F₆O₆(HO₃PCH₂PO₃)₂] (1) is one-dimensional, constructed from mixed valence {V^V₃V^{IV}FO₈ (HO₃PCH₂PO₃)₂}⁴⁻ clusters linked through {Cu₂(tpyprz)(H₂O)₂}⁴⁺ rods. The two-dimensional [{Cu₂(tpyprz)(H₂O)₂}V₄F₆O₆(O₃PCH₂CH₂PO₃)] (2) is constructed from {V₄F₆O₆(O₃PCH₂CH₂PO₃)₁⁴ⁿ⁻ chains crosslinked by {Cu₂(tpyprz)(H₂O)₂}⁴⁺ rods; mixed valence {V^V₂V^{IV}F₆O₆(O₃PCH₂CH₂PO₃)]⁴⁻ clusters are embedded in the network. Compound 3, [Cu₂(tpyprz){HO₃P(CH₂)₃PO₃H}] [V₂F₂O₅], consists of [Cu₂(tpyprz){HO₃P(CH₂)₃PO₃H}]_n²ⁿ⁺ chains and isolated {V₂F₂O₅}²⁻ anions. Structures 1–3 are compared to the structures of the analogous series {Cu₂(bisterpy)]⁴⁺/V_xO_yFⁿ⁻_n/{O₃P(CH₂)_nPO₃}⁴⁻, where bisterpy is 2,2':4':4'':2'',2'''-quaterpyridine, 6',6''-di-2-pyridinyl. The temperature-dependent magnetic susceptibilities of 2 and 3 are also discussed.

Keywords: Bimetallic oxides; Organic-inorganic hybrid materials; Vanadium organophosphonates; Copper-tetrapyridylpyridine components; Oxyfluorovanadates

1. Introduction

Complex structures [1–6], based on a molecular scale composite of inorganic and organic components, provide the potential for the design of novel functional materials for technological applications [7]. An inorganic material may provide useful magnetic, dielectric or optical proper-

*Corresponding author. Fax: +1 315 443 4070.

E-mail address: jazubiet@syr.edu (J. Zubieta).

ties, mechanical hardness, and thermal stability, while organic compounds offer processability, structural diversity, a range of polarizabilities and luminescent properties [8]. Consequently, the combination of the characteristics of the organic and inorganic components offers an opportunity to conflate useful properties within a single composite, providing access to a vast area of complex, multifunctional materials [9–16].

Inorganic–organic hybrid materials [17–20] are extended arrays of metal atoms or clusters bridged by polyfunctional

^{0022-4596/\$ -} see front matter \odot 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2007.06.020

organic molecules. An important subclass of this family of materials is the hybrid metal oxides, which contain metal-oxygen-metal (M-O-M) arrays as part of their structures. In such materials, the inorganic oxide contributes to the increased complexity, and hence functionality, through incorporation as one component in a multilevel structural material where there is a synergistic interaction between organic and inorganic components.

Metal organophosphonates are prototypical composite materials, which can exhibit a range of structures, including molecular clusters, chains, layers and threedimensional frameworks [21-23]. An important subclass of these materials are the oxovanadium organophosphonates [24,25], whose structures are often characterized by a two-dimensional network of V-P-O layers separated by hydrophobic organic domains. However, the detailed structural chemistry may be exceedingly complex, reflecting a variety of structural determinants [26-48]. In developing the structural systematics of these materials, we have investigated the oxovanadium organodiphosphonate system, focusing on a number of variables, specifically: (i) the length and identity of the organic tether of the diphosphonates [47], (ii) the introduction of organic or metal complex cations [26,47], and (iii) the incorporation of fluoride anions into the V-P-O substructure [48,49].

Comparison of the structures of the three component oxyfluorovanadates of the {Cu₂(bisterpy)}⁴⁺/V_xO_y F_z^{n-} / $\{O_3P(CH_2)_nPO_3\}^{4-}$ family (bisterpy = 2,2':4',4'':2'':2'''-quaterpyridyl-6,6"-di-2-pyridine) [48] to those of the nonfluorinated materials of the type $\{Cu_2(bisterpy)\}^{4+}/V_x O_v^{n-}/V_x O_v^{n-}$ $\{O_3P(CH_2), PO_3\}^{4-}$ reveals the profound structural consequences of fluoride incorporation. While both families exhibit anionic $\{V_x O_y F_z^{n-}\}_n$ or $\{V_x O_y^{n-}\}_n$ substructures and charge compensating complex coordination cations, the fluorinated phases manifest a considerably expanded range of V/P/O/F building blocks, including embedded clusters, chains and networks and three-dimensional frameworks. The fluorinated species also exhibited structures with V-O-V bonds in encapsulated binuclear and/or tetranuclear oxovanadium clusters, subunits which were absent in the structural chemistry of the {Cu₂(bisterpy)}⁴⁺/V_xO_vⁿ⁻/diphosphonate family of materials.

Encouraged by these observations, we have studied the introduction of fluoride into oxovanadate–diphosphonate phases with coordination complex cation subunits other than $\{Cu_2(bisterpy)\}^{4+}$, such as the closely related, but more compact, $\{Cu_2(tpyprz)\}^{4+}$ (tpyprz = tetra-4-pyridyl-pyrazine). Three members of the $\{Cu_2(tpyprz)\}^{4+}/V_xO_yF_z^{n-}/\{O_3P(CH_2)_nPO_3\}^{4-}$ family, whose structures are unrelated to those observed for the $\{Cu_2(bisterpy)\}^{4+}/V_xO_yF_z^{n-}/\{O_3P(CH_2)_nPO_3\}^{4-}$ materials, were isolated: $[\{Cu_2(tpyprz)(H_2O)_2\}V_4FO_8(HO_3PCH_2PO_3)_2]$ (1), $[\{Cu_2(tpyprz)(H_2O)_2\}V_4FO_6(O_3PCH_2CH_2PO_3)_2]$ (2), and $[Cu_2(tpyprz)(HO_3P(CH_2)_3PO_3]][V_2F_2O_5]$ (3).

2. Experimental section

2.1. General considerations

All chemicals were used as obtained without further purification: copper(II) acetate monohydrate, vanadium(V) oxide, tetra-2-pyridinylpyrazine, and hydrofluoric acid (48–51%) were purchased from Aldrich; methylenediphosphonic acid was purchased from Alfa Aesar. The diphosphonate ligands 1,2-ethylenediphosphonic acid and 1, 3-propylenediphosphonic acid were prepared as previously reported [50,51]. All syntheses were carried out in 23 ml poly(tetrafluoroethylene)-lined stainless steel containers under autogenous pressure. The reactants were stirred briefly, and the initial pH measured before heating. Water was distilled above $3.0 \text{ M}\Omega$ in-house using a Barnstead Model 525 Biopure Distilled Water Center. The initial and final pH of the reactions were measured using Hydrion pH sticks.

2.2. Synthesis of $[{Cu_2(tpyprz)(H_2O)_2}V_4FO_8(HO_3PCH_2PO_3)_2]$ (1)

A mixture of V_2O_5 (0.162 g, 0.891 mmol), $Cu(CH_3CO_2)_2$ · H₂O (0.091 g, 0.456 mmol), tpytrz (0.087 g, 0.224 mmol), methylenediphosphonic acid (0.090 g, 0.511 mmol), H₂O (10.07 g, 559.4 mmol), and HF (0.314 g, 7.85 mmol) in the mole ratio 3.98:2.04:1.00:2.28:2497:35.04 was stirred briefly before heating to 150 °C for 168 h. Initial and final pH values of 1.5 and 1.5, respectively, were recorded. Black crystals of **1** suitable for X-ray diffraction were isolated in 15% yield. IR (KBr pellet, cm⁻¹): 3096(w), 2950(w), 1607(m), 1562(m), 1478(m), 1405(m), 1248(w), 1192(m), 1125(m), 1080(m), 996(s), 789(m), and 744(m).

2.3. Synthesis of $[\{Cu_2(tpyprz)(H_2O)_2\}V_4F_6O_6\{O_3P(CH_2)_2PO_3\}]$ (2)

A solution of V_2O_5 (0.082 g, 0.451 mmol), $Cu(CH_3CO_2)_2$ · H₂O (0.089 g, 0.446 mmol), tpytrz (0.086 g, 0.221 mmol), 1,2-ethylenediphosphonic acid (0.064 g, 0.337 mmol) H₂O (10.01 g, 556.1 mmol), and HF (0.555 g, 13.88 mmol) in the mole ratio 2.04:2.02:1.00:1.52:2516:62.81 was stirred briefly before heating to 150 °C for 72 h (initial and final pH values were 1.0 and 1.0, respectively). Black crystals of **2** suitable for X-ray diffraction were isolated in 90% yield. IR (KBr pellet, cm⁻¹): 3068(w), 1597(m), 1476(m), 1411(m), 1296(w), 1261(w), 1191(m), 1111(s), 1045(m), 965(s), 785(m), and 760(m).

2.4. Synthesis of $[{Cu_2(tpyprz)} {HO_3P(CH_2)_3PO_3H}][V_2F_2O_5] (3)$

A solution of V_2O_5 (0.082 g, 0.451 mmol), $Cu(CH_3CO_2)_2$. H₂O (0.090 g, 0.451 mmol), tpytrz (0.086 g, 0.221 mmol), 1,3-propylenediphosphonic acid (0.093 g, 0.456 mmol), H₂O (10.02 g, 556.7 mmol) and HF (0.150 g, 3.75 mmol) Download English Version:

https://daneshyari.com/en/article/1333782

Download Persian Version:

https://daneshyari.com/article/1333782

Daneshyari.com