Polyhedron 81 (2014) 555-563

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Synthesis and magneto-structural characterization of copper(II) nitrobenzoate complexes containing nicotinamide or methylnicotinamide ligands

Zuzana Vasková^a, Nives Kitanovski^b, Zvonko Jagličić^{c,d}, Peter Strauch^e, Zdeňka Růžičková^f, Dušan Valigura^g, Marian Koman^g, Bojan Kozlevčar^b, Jan Moncol^{g,*}

^a Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-84536 Bratislava, Slovakia

^b Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia

^c Institute of Mathematics, Physics and Mechanics, 1000 Ljubljana, Slovenia

^d Faculty of Civil and Geodetic Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia

^e Institute of Chemistry, University of Potsdam, 14476 Golm, Germany

^f Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice, Czech Republic

^g Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, SK-81237 Bratislava, Slovakia

ARTICLE INFO

Article history: Received 9 November 2013 Accepted 8 July 2014 Available online 17 July 2014

Keywords: Copper(II) Nicotinamide N-methylnicotinamide Crystal structure Magnetic properties

ABSTRACT

Three new copper(II) 4-nitrobenzoato coordination compounds $(4-NO_2bz^- = 4-nitrobenzoate anions)$ with N-methylnicotinamide (mna) $[Cu(4-NO_2bz)_2(mna)_2(H_2O)]$ (1), $[Cu(4-NO_2bz)_2(\mu-mna)(H_2O)]_2$ (2) and $[Cu(\mu-4-NO_2bz)_2(mna)]_2$ (3) were synthesized and characterized. Due to a comparison, additional two related compounds $[Cu(3,5-(NO_2)_2bz)_2(nia)_2(H_2O)]$ (4) (nia = nicotinamide, $3,5-(NO_2)_2bz^- = 3,5$ -dinitrobenzoate anions) and $[Cu(\mu-2-NO_2bz)_2(mna)]_2$ (5) ($2-NO_2bz^- = 2$ -nitrobenzoate anions) were isolated. The mononuclear compounds with mna 1 and nia 4 show CuO_2N_2O chromophores with the water molecule placed at the apex of the square pyramid. The square-pyramidal coordination sphere CuO_3NO in 2 differs to CuO_2N_2O in 1 and 4. Differently, the water molecule is in 2 at the basal-plane, while two mna molecules serve also as bridges via *N*-py and *O*-amido enabling a dinuclear molecular structure 1, 2 and 4 are paramagnetic though a dinuclear structure is seen in 2, while a clear-cut strong antiferromagnetic (AFM) coupling (2J - 300 cm⁻¹) is found for the compounds 3 and 5.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

There has been significant interest in the field of structural and supramolecular chemistry of mixed coordination complexes owing to their potential applications in magnetic devices, non-linear optics, supramolecular catalysis, dynamic porous and zeolite-like materials [1]. Nicotinamide is one of the most popular pyridinelike N-donor ligands for construction due to these purposes [2]. Because, the nicotinamide is also a component of several enzymes e.g. vital coenzyme NAD (nicotinamide adenine dinucleotide) [3], it is often used for a synthesis of metal complexes as models for the bioinorganic species and for the metallodrugs development [4]. The hydrogen-bonding coordination supramolecular systems based on nicotinamide have been prepared and intensely studied using different transition metals [5]. The nicotinamide as a ligand in metal complexes can link to the other molecules through hydrogen bonds of their carboxamide groups [6,7]. The copper(II) carboxylate complexes with nicotinamide have been also tested for antibacterial, antifungal activities [8,9], and in the medicine [10]. On the other hand, only a few metal complexes with *N*-meth-ylnicotinamide (Scheme 1) have been studied as an object for supramolecular coordination chemistry [11,12], though it differs to nicotinamide only by one methyl group replacing the hydrogen atom.

In this paper, we describe a preparation, spectral and magnetic properties, structural characterization, and supramolecular organization of five new coordination compounds with nicotinamide (nia) and N-methylnicotinamide (mna) (Scheme 1). Among them, three 4-nitrobenzoato/mna species precipitate from very similar reaction mixtures, but giving structurally different, though all square-pyramidal coordination sets CuO₂N₂O, CuO₃NO, CuO₄N. The synthetic mechanism and stability of these compounds is clearly related to the amido group and water molecules hydrogen bonds.

^{*} Corresponding author. Tel.: +421 2593 25 186; fax: +421 2524 93 198. *E-mail address:* jan.moncol@stuba.sk (J. Moncol).

Scheme 1. The related pyridine-based nicotinamide (nia), N-methylnicotinamide (mna) and two nitro-benzoato ligands (Accelrys Draw 4.1 [13] has been used for drawing).

2. Experimental

All chemicals were of analytical grade (Aldrich, Sigma) and used without further purification. Carbon, hydrogen and nitrogen analyses were carried out using a CHNSO FlashEATM 1112 Automatic Elemental Analyzer. The electronic spectra (190–1100 nm) were measured in nujol suspensions with a SPECORD 200 (Carl Zeiss Jena) spectrophotometer at room temperature. IR spectra (4000–100 cm⁻¹) were recorded on a Nicolet 5700 FTIR spectrophotometer using an ATR attachment at room temperature. EPR spectra

Table 1

Crystallographic data for 1-2 and 4-5.

were recorded at room temperature with a Bruker ER 200E-SRC and Bruker ESP 300 spectrometers operating at X-band equipped with a Bruker ER 035 NMR gaussmeter and Hewlett Packard 5350B microwave frequency counter. Magnetic susceptibility was investigated with Quantum Design MPMS-XL-5 SQUID susceptometer. Magnetic susceptibility was investigated between 2 and 300 K in a constant magnetic field of H = 1000 Oe. The data were corrected for the sample holder contribution and a temperature independent magnetic susceptibility of inner shell electrons (Larmor diamagnetism) as obtained from Pascall's tables [14]. The powder samples were measured with PANalytical EMPYREAN diffractometer using β -filtered Cu K α radiation.

2.1. Preparation of complexes

2.1.1. $[Cu(4-NO_2bz)_2(mna)_2(H_2O)]$, 1

The compound **1** was prepared by the reaction of an aqueous solution (50 mL) of copper(II) acetate monohydrate (1.0 mmol, 0.200 g) with N-methylnicotinamide (mna, 2.0 mmol, 0.272 g) followed by an addition of the 4-nitrobenzoic acid (2.0 mmol, 0.334 g) and one pellet of potassium hydroxide. The reaction mixture was stirred until the blue product precipitated (1 h). It was filtered off, washed with a small portion of water and dried at the ambient temperature. The mother liquor obtained from filtration was left for crystallization at ambient temperature on air. The single crystals suitable for X-ray structure determination were separated after several days. Yield: 0.20 g (57%). *Anal.* Calc. for C₂₈H₂₆O₁₁N₆Cu (M_r = 686.09): C, 49.02; H, 3.82; N, 12.25. Found: C, 49.52; H, 3.60; N, 12.53%. IR (cm⁻¹): v(C=O) 1670, v_{as}(COO⁻) 1572, v_s(COO⁻) 1385, UV-Vis (cm⁻¹): 15300. EPR: g = 2.10.

2.1.2. $[Cu(4-NO_2bz)_2(\mu-mna)(H_2O)]_2$, 2

The synthesis procedure for the compound 2 is similar as for the complex 1, but with less N-methylnicotinamide (mna; 1.0 mmol, 0.136 g). After a few hours of stirring to dissolve the solid starting compounds, the resulting turquoise solution was left at ambient temperature. The turquoise coloured crystals suitable also for X-ray structure determination were separated after several weeks.

	1	1	2	2	4	5
Chemical formula	C28H26CuN6O11	C28H26CuN6O11	C42H36Cu2N8O20	C42H36Cu2N8O20	C26H20CuN8O15	C42H32Cu2N8O18
$M_{\rm r}$	686.09	686.09	1099.87	1099.87	748.05	1063.84
Cell setting	monoclinic	monoclinic	triclinic	triclinic	monoclinic	monoclinic
Space group	C2/c	C2/c	ΡĪ	ΡĪ	P2/n	$P2_1/c$
T (K)	293(2)	150(2)	293(2)	150(2)	293(2)	150(2)
a (Å)	25.096(6)	25.050(5)	8.7061(3)	8.674(2)	10.278(1)	10.539(2)
b (Å)	5.607(1)	5.572(1)	10.9217(7)	10.886(2)	5.863(1)	23.154(5)
<i>c</i> (Å)	23.691(8)	23.588(5)	13.3053(7)	13.276(3)	24.829(3)	8.9450(18)
α (°)	90	90	113.382(6)	113.27(3)	90	90
β (°)	114.41(2)	114.14(3)	104.247(4)	104.56(3)	98.48(1)	94.93(3)
γ (°)	90	90	91.402(4)	91.23(3)	90	90
V (Å ³)	3035.5(14)	3004.5(13)	1114.87(10)	1104.2(4)	1479.8(3)	2174.7(8)
Ζ	4	4	1	1	2	2
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα	Μο Κα	Μο Κα
μ (mm ⁻¹)	0.790	0.798	1.047	1.057	0.829	1.067
Crystal size (mm)	$0.36 \times 0.26 \times 0.14$	$0.30\times0.25\times0.21$	$0.50 \times 0.32 \times 0.10$	$0.35 \times 0.30 \times 0.30$	$0.45\times0.25\times0.15$	$0.33 \times 0.22 \times 0.20$
Diffractometer	Bruker Kappa APEXII	Bruker-Nonius	Xcalibur S CCD	Bruker-Nonius	Siemens P4	Bruker-Nonius
	CCD	KappaCCD		KappaCCD		KappaCCD
Abs. correction	SADABS	SADABS	CrysAlisPro	SADABS	XEMP	SADABS
T_{\min}, T_{\max}	0.824, 0.910	0.796, 0.853	0.623, 0.903	0.709, 0.742	0.707, 0.886	0.709, 0.822
S	1.062	1.063	1.079	1.074	1.036	1.049
$R_1[F^2 > 2\sigma(F^2)], wR_2(F^2)$	0.0278, 0.0787	0.0321, 0.0739	0.0356, 0.0837	0.0461, 0.1035	0.0490, 0.1032	0.0395, 0.0820
Data/restrains/	3046/16/214	3004/16/213	4520/0/326	4493/0/326	3015/0/227	4350/0/317
parameters						
$\Delta ho_{ m max}$, $\Delta ho_{ m min}$ (e Å $^{-3}$)	0.298, -0.216	0.289, -0.250	0.281, -0.368	0.313, -0.342	0.381, -0.297	0.310, -0.335
CCDC	860144	860145	924383	860146	860143	924384

Download English Version:

https://daneshyari.com/en/article/1334465

Download Persian Version:

https://daneshyari.com/article/1334465

Daneshyari.com