Synthesis, crystal structure and magnetic properties of one-dimensional coordination polymers

Q.R. Cheng ${ }^{\text {b }}$, H. Zhou ${ }^{\text {b }}$, Z.Q. Pan ${ }^{\text {b,* }}$, G.Y. Liao ${ }^{\text {a,* }, ~ Z . G . ~ X u ~}{ }^{\text {b }}$
${ }^{\text {a }}$ Engineering Research Center of Nano-Geo Materials of Ministry of Education China University of Geosciences, Wuhan 430074,China
${ }^{\mathrm{b}}$ Wuhan Institute of Technology, Wuhan, China

A R T I C L E I N F O

Article history:

Received 16 April 2014
Accepted 8 July 2014
Available online 24 July 2014

Keywords:

Macrocyclic complex
Supramolecular self-assembly
Synthesis
Magnetism
Crystal structure

Abstract

Three new coordination polymers of Robson-type macrocycles, $\left\{\left[\mathrm{Cu}_{2} \mathrm{~L}^{1} \text { (bipy)].(} \mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{CH}_{3} \mathrm{CN}\right\}_{\infty}(\mathbf{1}),\left\{\left[\mathrm{Cu}_{2}\right.\right.$ L^{2} (bipy) $\left.] \cdot\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}(\mathbf{2})$ and $\left\{\left[\mathrm{Cu}_{2} \mathrm{~L}^{1}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right] \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right\}_{\infty}$ (3) (where $\mathrm{H}_{2} \mathrm{~L}^{1}$ and $\mathrm{H}_{2} \mathrm{~L}^{2}$ are the [2+2] condensation products of 1,3-diaminopropane with 2,6-diformyl-4-flurophenol and 2,6-diformyl-4chlorophenol, respectively), have been synthesized and characterized. The magnetic susceptibility was measured for 1, 2 and 3 over the temperature range $2-300 \mathrm{~K}$. The optimized magnetic data were $J=-317.6 \mathrm{~cm}^{-1}, j^{\prime}=4.01 \mathrm{~cm}^{-1}, \rho=0.00031$ with $R=8.5 \times 10^{-39}$ for $1, J=-320.91 \mathrm{~cm}^{-1}, j^{\prime}=4.39 \mathrm{~cm}^{-1}$, $\rho=0.0013$ with $R=1.8 \times 10^{-39}$ for 2 and $J=-221.01 \mathrm{~cm}^{-1}, T I P=0.00225$, with $R=6 \times 10^{-5}$ for 3 .

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The design and construction of metal-organic frameworks (MOFs) is one of the most active areas of materials research in recent years [1-6]. The intense interest in these materials is driven by their potential applications as functional materials (catalysis, magnetism, gas separation and non-linear optics) [7-11] as well as by their structural diversity and intriguing topologies [12-19]. Many Robson-type Schiff base macrocyclic complexes have been synthesized and their properties, such as magnetism and electrochemistry, have been studied [20-30]. Our group synthesized a series of Robson-type Schiff base macrocyclic complexes and studied their magnetic and electrochemical properties, along with their DNA cleavage and SOD activities [31-39]. We have recently reported some dimers in which the macrocycles were connected by 4,4'-bipyridine [40,41]. Huang et al. reported the coordination self-assembly of dinuclear Robson-type macrocyclic complexes, but the properties of the coordination polymers have not been studied [42-44].

Recently our attention has been drawn to the study of the interactions between paramagnetic metal ions in coupled systems, including polymeric and linear chains, and especially the study of strong interactions between metal ions relatively far away from each other through extended bridging ligands. Here, we report the interesting crystal structures and magnetic properties of three polymers of Robson-type macrocyclic dinuclear $\mathrm{Cu}(\mathrm{II})$ complexes. We have also made an attempt to compare the magnetic

[^0]susceptibilities of these polymeric binuclear copper(II) complexes with the magnetic susceptibilities observed in other octahedrally coordinated binuclear copper(II) systems to determine the influence of some structural parameters on the strength of the exchange coupling. Moreover, the influence of substituents and diamine types in the macrocycle rings, anions and metal ions on the final supramolecular assembly are also investigated.

2. Experimental

2.1. Materials and measurements

Unless otherwise stated, all commercial reagents and solvents were obtained from commercial providers and used without further purification. 2,6-Diformyl-4-fluorophenol was prepared in high yields using active MnO_{2} as an oxidant [45].

IR spectra were recorded on a Vector 22 FIR spectrophotometer using KBr discs. Elemental analyses were performed on a PerkinElmer 240 analyzer. Magnetic susceptibility of a crystallinepowdered sample was measured on a SQUID-based sample magnetic meter in the temperature range $2.0-300 \mathrm{~K}$, and the diamagnetic corrections were made according to Pascal's constants.

2.2. X-ray data collection and refinement

The crystals were measured on a Bruker AXS SMART diffractometer (Mo $\mathrm{K} \alpha$ radiation monochromator). Data reduction and cell refinement were performed by smart and saint programs [46]. The structures were solved by direct methods (Bruker shelxtl) and

Fig. 1. Perspective view of the complex cation of 1. Hydrogen atoms have been omitted for clarity.
refined on F^{2} by full-matrix least squares (Bruker shelxtl) using all unique data [47]. The non-H atoms in the structure were treated as anisotropic. Hydrogen atoms were located geometrically and refined in the riding mode.

2.3. Synthesis of the complexes

2.3.1. Preparation of the complex $\left\{\left[\mathrm{Cu}_{2} \mathrm{~L}^{1}(\right.\right.$ bipy $\left.\left.)\right] \cdot\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{CH}_{3} \mathrm{CN}\right\}(\mathbf{1})$

To a mixture of acetonitrile-ethanol (1:1, 20 mL) containing 2, 6-diformyl-4-fluorophenol ($0.084 \mathrm{~g}, 0.5 \mathrm{mmol}$) and $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($0.186 \mathrm{~g}, 0.5 \mathrm{mmol}$), after adding three drops of triethylamine, 1,3-diaminopropane ($0.037 \mathrm{~g}, 0.5 \mathrm{mmol}$) in acetonitrile-ethanol ($1: 1,10 \mathrm{~mL}$) was slowly added. The mixture was stirred for 4 h , then $4,4^{\prime}$-bipy ($0.156 \mathrm{~g}, 1 \mathrm{mmol}$) in acetonitrile-ethanol ($1: 1$, 10 mL) was introduced. The mixture was refluxed for 1 h , then cooled to room temperature and filtered. Green crystals of complex 1 were obtained by vapor diffusion of diethyl ether into the solution of the complex in acetonitrile-ethanol. Yield: $0.136 \mathrm{~g}, 29 \%$. Anal. Calc. for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{Cu}_{2} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{10} \mathrm{Cl}_{2}$: C, 43.74; $\mathrm{H}, 3.35 ; \mathrm{N}, 10.50$. Found: C, 44.19 ; H, 3.85 ; N, 10.22%. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $1638\left(v_{\mathrm{C}=\mathrm{N}}\right)$, $1104\left(v_{\mathrm{ClO}}^{-}\right), 642\left(\delta_{\mathrm{ClO4}}^{-}\right)$.

2.3.2. Preparation of the complex $\left\{\left[\mathrm{Cu}_{2} \mathrm{~L}^{2}(\right.\right.$ bipy $\left.\left.)\right] \cdot\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right\}$ (2)

Complex 2 was obtained in a manner similar to that used for complex 1, except that 2,6-diformyl-4-chlorophenol was used instead of 2,6-diformyl-4-fluorophenol. Yield: $0.095 \mathrm{~g}, 21 \%$. Anal.

Calc. for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{Cu}_{2} \mathrm{~N}_{6} \mathrm{O}_{11} \mathrm{Cl}_{4}$: C, 40.73; $\mathrm{H}, 3.20$; $\mathrm{N}, 8.91$. Found: C, 41.02; H, 3.56; $\mathrm{N}, 8.53 \%$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $1638\left(v_{\mathrm{C}=\mathrm{N}}\right), 1102\left(v_{\mathrm{ClO}}^{-}\right)$, $645\left(\delta_{\text {ClO4 }}^{-}\right)$.

2.3.3. Preparation of the complex $\left\{\left[\mathrm{Cu}_{2} L^{1}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right] \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right\}$ (3)

Complex $\mathbf{3}$ was obtained in a manner similar to that used for complex 1, except that terephthalic acid was used instead of 4,4'-bipy. Yield: $0.087 \mathrm{~g}, 19 \%$. Anal. Calc. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{Cu}_{2} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{9}$: C, 47.68; H, 4.00; N, 7.41. Found: C, 47.31; H, 3.86; N, 7.69\%. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 1639\left(v_{\mathrm{C}=\mathrm{N}}\right), 1100\left(v_{\overline{\mathrm{Cl} O 4}}\right), 647\left(\delta_{\mathrm{ClO} 4}^{-}\right)$.

3. Results and discussion

3.1. Synthesis and characterization

The complexes were obtained by the reaction of 1,3-diaminopropane with 2,6-diformyl-4-fluro-phenol and 2,6-diformyl-4chlorophenol in the presence of $4,4^{\prime}$-bipy/terephthalic acid and $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in acetonitrile/ethanol $\left(\mathrm{V}_{1} / \mathrm{V}_{2}, 1: 1\right)$ solution. In the process of the experiment, three kinds of metal salts, $\mathrm{M}(\mathrm{OAc})_{2}, \mathrm{MCl}_{2}$ and $\mathrm{M}\left(\mathrm{ClO}_{4}\right)_{2}$, were used to investigate the possibility for the formation of polymers, and we found that the title polymers can be obtained only by using $\mathrm{M}\left(\mathrm{ClO}_{4}\right)_{2}$ because of the weak coordination capacity of ClO_{4}^{-}compared with those of OAc^{-}and Cl^{-}. X-ray structure determinations show that the three complexes are coordination polymers connected by 4,4'-bipy/terephthalic acid. In the IR spectra of the complexes, the sharp $\mathrm{C}=\mathrm{N}$ stretching vibration bands, corresponding to imine groups of the ligand framework, are observed at $1638 \mathrm{~cm}^{-1}$ for $\mathbf{1}$ and 2 and $1639 \mathrm{~cm}^{-1}$ for 3, indicating that macrocyclic complexes have been synthesized.

3.2. Electrospray mass spectra

The ES-MS spectra of complexes $\mathbf{1}$ and $\mathbf{3}$ in acetonitrile solution are shown in the Supplementary material, S 1 and S 2 , respectively. In S 1 , the peak at $m / z 636.92$, corresponding to $\left[\mathrm{Cu}_{2} \mathrm{~L}^{1}\left(\mathrm{ClO}_{4}\right)\right]^{+}$, is dominant and can be ascribed to the molecule ionic peak of complex 1, confirming the formation of the macrocyclic complex and indicating that $\left[\mathrm{Cu}_{2} \mathrm{~L}^{1}\left(\mathrm{ClO}_{4}\right)\right]^{+}$is very stable in $\mathrm{CH}_{3} \mathrm{CN}$ solution. In S2, the peak at $m / z 610.58$, corresponding to $\left[\mathrm{CuHL}^{1}\left(\mathrm{HClO}_{4}\right)\left(\mathrm{H}_{2-}\right.\right.$ $\left.\mathrm{O})_{2}\right]^{+}$, is dominant and can be ascribed to the molecule ionic peak of complex 3, confirming the formation of the macrocyclic complex. The peak at $m / z 595.00$ attributed to $\left[\mathrm{CuHL}^{1}\left(\mathrm{HClO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$, and the peak at $m / z 573.00$ is attributed to $\left[\mathrm{CuHL}^{1}\left(\mathrm{HClO}_{4}\right)\right]^{+}$. The

Table 1
Crystallographic data for complexes 1, 2 and 3.

	1	2	3
Empirical formula	$\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{Cu}_{2} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{10}$	$\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{Cu}_{2} \mathrm{~N}_{6} \mathrm{O}_{11} \mathrm{Cl}_{4}$	$\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{Cu}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{13}$
Formula weight	933.64	943.50	538.43
Crystal system, Space group	orthorhombic, P212121	orthorhombic, P212121	monoclinic, C2/c
$a, b, c(\AA)$	12.097(2), 16.9507(13), 18.6656(15)	12.0908(12), 16.9971(17), 18.8379(18)	20.835(4), 11.531(2), 20.278(4)
Volume (\AA^{3})	3827.4(8)	3871.4(7)	4573.2(15)
$Z, D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	4, 1.620	4, 1.619	8, 1.564
$\mu(\mathrm{Mo} \mathrm{K} \alpha$) [mm], F(000)	1.326, 1896	1.440, 1912	1.119, 2216
Crystal size (mm)	$0.20 \times 0.22 \times 0.26$	$0.22 \times 0.24 \times 0.28$	$0.20 \times 0.22 \times 0.26$
Temperature (K)	291	291	291
Mo K α radiation (\AA)	0.71073	0.71073	0.71073
θ range (${ }^{\circ}$)	2.0, 26.0	2.2, 26.0	2.1, 26.0
Dataset	-14: 14; -18: 20; -15: 22	-14: 14; -20: 18; -22: 23	-25: 24; -14: 14; -12: 24
Total unique data $R_{\text {int }}$	22 190, 7516, 0.034	22397, 7595, 0.062	12656, 4462, 0.036
Observed data [$I>2.0 \sigma(I)$]	7064	5706	3388
Nref, Npar	7516, 515	7595, 514	4462, 323
$R, w R_{2}, S$	0.0437, 0.1176, 1.09	0.0575, 0.1285, 1.01	0.0563, 0.1405, 1.06
Maximum and average shift/error	0.00, 0.00	0.00, 0.00	0.00, 0.00
Minimum and maximum residual density ($\mathrm{e} \AA^{-3}$)	-0.41, 0.26	-0.49, 0.27	-0.41, 0.26

https://daneshyari.com/en/article/1334480

Download Persian Version:
https://daneshyari.com/article/1334480

Daneshyari.com

[^0]: * Corresponding authors. Fax: +86 2787194465.

 E-mail address: zhiqpan@163.com (Z.Q. Pan).
 http://dx.doi.org/10.1016/j.poly.2014.07.022
 0277-5387/® 2014 Elsevier Ltd. All rights reserved.

