Polyhedron 58 (2013) 13-17

Contents lists available at SciVerse ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Hexamethylphosphorus triamide: A chloride-for-dimethylamido, Me₂N⁻, exchange reagent

Upul Jayarathne, Joel T. Mague, James P. Donahue*

Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, LA 70118-5698, United States

ARTICLE INFO

Article history: Available online 20 August 2012

Dedicated to the memory of Michelle Millar, whose warmth and sense of humor are missed.

Keywords: Amido complexes Chloride-for-dimethylamido exchange

ABSTRACT

The reaction of P(NMe₂)₃ with WCl₆ produces [CIP(NMe₂)₃][WCl₄(NMe₂)₂], [CIP(NMe₂)₃][2], through apparent Cl⁻-for-NMe₂⁻ exchange. A six-coordinate [Cl₅W–PCl(NMe₂)₃] metallophosphorane species is proposed as a probable intermediate in this ligand exchange reaction. A similar reaction with NbCl₅ results in a more complex product, [NbCl₄(NHMe₂)(η^2 -N(Me)–C(H)–P(NMe₂)₃]], **3**, in which Cl⁻-for-NMe₂⁻ exchange is attended by additional reactions that include C–H activation and cyclometallation of an NMe₂⁻ ligand, H⁺ transfer to NMe₂⁻ to form a dimethylamine ligand, and adduct formation between exogenous P(NMe₂)₃ and the formyliminium carbon resulting from cyclometallation. Structural characterization of [CIP(NMe₂)₃][2] reveals a *cis* disposition of NMe₂⁻ ligands that are oriented at 63.2° relative to one another and an appreciable lengthening of the W–Cl bonds *trans* to the NMe₂⁻ ligands (2.4615[4] Å) as compared to those that are *cis* (2.3918[4] Å). The structure of **3** is distorted pentagonal bipyramidal with the formyliminium carbon and nitrogen atoms arranged slightly above and below by ~0.37 Å the equatorial plane. The potential synthetic utility of P(NMe₂)₃ as an alternative to the classical method of delivery of dialkylamido ligands via LiNR₂ is discussed.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Dialkyl amido anions are widely employed as supporting ligands in transition metal coordination chemistry because they enjoy high basicity both as σ and π -donors [1], ready access either commercially or synthetically, and amenability to the incorporation of solubilizing or sterically encumbering groups on the nitrogen atom [2]. The typical method by which dialkylamido ligands are delivered to a transition metal center is via metathesis of chloride ligand using an alkali metal salt of the amido anion [3–10].

In the course of some efforts aimed at synthesis of tungsten complexes with $P(NMe_2)_3$ as a supporting ligand, we observed a limited tendency of this phosphine to effect Cl^- -for- NMe_2^- exchange at the tungsten center [11]. These ligand substitutions appeared to be restricted to one or two occurrences in a given compound even though the possibility existed for additional exchanges. These observations, described here in greater detail, lead us to suggest the potential utility of $P(NMe_2)_3$ as a mild and selective reagent for the delivery of one or two NMe_2^- ligands to high-valent early or middle transition metal complexes.

* Corresponding author.

E-mail address: donahue@tulane.edu (J.P. Donahue).

2. Experimental

2.1. General considerations

All glassware was oven-dried, and all reactions and manipulations were conducted using standard Schlenk techniques or glove boxes. Prior to their use, toluene, *n*-pentane, and CH_2Cl_2 were dried by passage through a system of drying columns from the Glass Contour Company. The numbering system defined in Fig. 1 is used to identify the compounds in the following discussion.

2.2. Physical methods

Electrochemical measurements were made with a CHI620C electrochemical measurements were made with a CHI620C electrochemical workstation using a Ag wire reference electrode, a platinum disk working electrode, Pt wire as auxiliary electrode, and $[Bu_4N][PF_6]$ as the supporting electrolyte. The $[Cp_2Fe]^+/Cp_2Fe$ couple occurred at +0.49 mV (by CV) in 0.10 M $[Bu_4N][PF_6]$ in THF. The UV–vis spectrum (molar absorptivities reported in M^{-1} - cm⁻¹) was obtained at ambient temperature with a Hewlett–Packard 8452A diode array spectrometer, and the elemental analysis was performed by Midwest Microlab, LLC of Indianapolis, IN. Details regarding growth of crystals, collection and processing of X-ray diffraction data, and the solution and refinement of all crystal structures are deferred to Supplementary data. Final unit cell and

^{0277-5387/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.poly.2012.08.031

Fig. 1. Metal complexes resulting from Cl⁻-for-NMe₂⁻ exchange with P(NMe₂)₃.

refinement data for both crystal structures are presented in Table 1.

2.3. Preparation of $[CIP(NMe_2)_3][WCl_4(NMe_2)_2]$, $[CIP(NMe_2)_3][2]$

A 200 mL Schlenk flask was charged with WCl₆ (0.723 g, 1.82 mmol) and 50 mL of dry toluene. To this mixture was added P(NMe₂)₃ (0.975 mL, 5.36 mmol) in 10 mL of toluene. Upon addition, a purple color developed, and stirring was continued for an hour, during which time the color of the solution turned to reddish orange. A reflux condenser was connected to the flask, and the mixture was refluxed for an additional hour. Once the solution cooled to room temperature, the solvent was reduced to \sim 20 mL and allowed to stand overnight without stirring. Reddish colored plate-like crystals deposited at the bottom of the flask. The flask was cooled at -20 °C for 12 h; crystals were collected by filtration and dried in vacuo. Yield: 0.358 g, 32%. The [W^VCl₄(NMe₂)₂]¹⁻ anion was not observable by ¹H NMR owing to its paramagnetism. Absorption spectrum (CH₂Cl₂), λ_{max} in nm (ϵ_{M}): 376 (1900), ~488 (sh, 520). Cyclic voltammetry (THF): $W^V \rightarrow W^{VI} + e^-$, 0.841 V. Anal. Calc. for C₁₀H₃₀Cl₅N₅PW: C, 19.61; H, 4.94; N, 11.43. Found: C, 19.58; H, 4.91; N, 11.42.

2.4. Preparation of [NbCl₄(NMe₂H)(((formyl-N-methyl)iminium- κ N)-1-tris(dimethylamino)-phosphane)- κC^{1}], 3

A 200 mL Schlenk flask was charged with a stir bar, NbCl₅ (0.196 g, 0.72 mmol) and 30 mL of dry toluene, while $P(NMe_2)_3$ (0.196 mL, 1.08 mmol) in 5 mL toluene was separately added to a 50 mL Schlenk flask. The phosphine solution was transferred via cannula to the NbCl₅ mixture in toluene, which induced an immediate color change from yellow to reddish-orange. A reflux con-

Table 1

Summary	of Unit	Cell and	Refinement	Data !	for	$[ClP(NMe_2)_3][2]$	and 3 .
					1	[===(====2)5][=]	

Compound	$[ClP(NMe_2)_3][2]$	3
Solvent	none	none
Formula	C10H30Cl5N5PW	C10H29Cl4N5NbP
Formula weight	612.46	485.06
xtl system	orthorhombic	monoclinic
space grp	$P2_{1}2_{1}2_{1}$	$P2_1/n$
Color, habit	orange plate	red slat
a (Å)	8.5132(16)	8.5893(3)
b (Å)	10.3768(7)	18.0894(7)
<i>c</i> (Å)	25.0459(17)	13.1383(5)
α (°)	90	90
β(°)	90	90.231(1)
γ, (°)	90	90
$V(Å^3)$	2212.5(3)	2041.35(13)
T (K)	100	100
Ζ	4	4
R_1^{a} , wR_2^{b}	0.0132, 0.0274	0.0434, 0.1159
Goodness-of-fit (GoF) on F2	1.030	1.043

^a $R_1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$. ^b $wR_2 = \{ [\Sigma w(F_o^2 - F_c^2)/\Sigma w(F_o^2)^2 \}^{1/2}; w = 1/[\sigma^2(F_o^2) \text{ for } [CIP(NMe_2)_3][2]; w = 1/[\sigma^2(F_o^2) + (0.618P)^2 + 4.4092P], \text{ where } P = (F_o^2 + 2F_c^2)/3 \text{ for } \mathbf{3}.$

denser was attached to the reaction vessel, and the solution was refluxed under N₂ for 3 h. After cooling to ambient temperature, the solvent was evaporated under reduced pressure, and a waxy solid was obtained. This solid was washed with pentane and dried under vacuum. Crystalline product was obtained the diffusion of npentane vapor into a concentrated CH_2Cl_2 solution. ¹H NMR (δ , ppm in C₆D₆): 2.38 (d, J = 12.0 Hz, 18H, P(N(CH₃)₂)₃), 2.48 (d, J = 8.5 Hz, 6H, NH(CH₃)₂), 2.64 (d, J = 9.9 Hz, 3H, N(CH₃)=CH), ~3.23 (br, 1H, NH(CH₃)₂), 4.38 (s, 1H, N(CH₃)=CH).

3. Discussion

Treatment of trans-[W^{IV}Cl₄(PMePh₂)₂] with two eq. of P(NMe₂)₃ in an attempt to effect phosphine substitution was observed to produce modest (~15%) but reproducible quantities of [W^{IV}Cl₃ (NMe₂)(PMePh₂)₂)], **1**, (Fig. 1). This synthetic foray was part of a study of the reduction potentials and reactivity of mid- and lowvalent chlorophosphine tungsten complexes that are of interest for their small molecule reactivity [11]. In the context of this effort, [WCl₆] was reacted with a several-fold excess of P(NMe₂)₃ with the expectation of forming trans-[W^{IV}Cl₄(P(NMe₂)₃)₂] according to a published procedure for preparation of such complexes [12]. However, bulk crystallization, which could be accomplished more cleanly and in substantively better yield than for [W^{IV}Cl₃(NMe₂)] $(PMePh_2)_2$, led to the isolation of $[CIP(NMe_2)_3][cis-W^VCl_4(NMe_2)_2]$, [CIP(NMe₂)₃][2], a product in which both reduction and ligand exchange at tungsten have occurred (Fig. 1). The methyl groups of the NMe₂ ligands in [2]^{1–} were not observed by ¹H NMR owing to the compound's paramagetism.

The observation of both nonredox ligand exchange (in 1) and of ligand exchange attended by reduction (in $[2]^{1-}$) suggests that the reduction and ligand exchange processes are not necessarily related and may occur as separate events. The transformation of $[WCl_4(PMePh_2)_2]$ to **1** likely begins with $P(NMe_2)_3$ association to afford the 7-coordinate complex shown as (b) in Scheme 1, examples of which have been identified structurally [13–14]. A plausible intermediate leading to 1 is a metallophosphorane species ((d) in Scheme 1) formed by internal transfer of chloride to the phosphorus atom of $P(NMe_2)_3$. The transition state (**c**) through which this metallophosphorane forms would have an analog (e) involving a dimethylamido group, thus providing for facile Cl⁻-for-NMe₂⁻ exchange between tungsten and phosphorus and ultimate dissociation of $PCl(NMe_2)_2$. Metallophosphorane species such as (**d**) have been implicated experimentally and assessed computationally in related types of exchange reactions with phosphine ligands [15-16]. It is noteworthy that halide-for- NR_2^- exchange does not appear to have been previously described.

A possible driving force for this P-NMe₂ bond scission and ligand exchange is enhanced stabilization of the W^{IV} center by the strong π -donating NMe₂⁻ ligand. The stabilization thus conferred upon the W^{IV} center appears to attenuate its reactivity such that further ligand exchange is suppressed. A report of facile formation of PCl(NMe₂)₂ from P(NMe₂)₃ and Me₃SiCl via a phosphonium

Download English Version:

https://daneshyari.com/en/article/1334538

Download Persian Version:

https://daneshyari.com/article/1334538

Daneshyari.com