

Contents lists available at SciVerse ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Reactions of a tungsten alkylidyne complex with mono-dentate phosphines: Thermodynamic and theoretical studies

Ping Chen a, Brenda A. Dougan b, Xinhao Zhang a,*, Yun-Dong Wu a,*, Zi-Ling Xue b,*

^a Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China

ARTICLE INFO

Article history: Available online 23 July 2012

Dedicated to the memory of Michelle Millar, a scientist and teacher who gave so much to the chemistry communities.

Keywords: Alkvlidvne Alkylidene Phosphine adduct Equilibrium DFT calculations α-H abstraction

ABSTRACT

Addition of mono-dentate phosphines PMe3 and PMe2Ph to the W(VI) alkyl alkylidyne complex W(CH₂SiMe₃)₃(≡CSiMe₃) (1) is reversible, each reaching equilibrium. Thermodynamic studies of the equilibria have been conducted, giving $\Delta H^{\circ} = -10.0(1.1)$ kcal/mol and $\Delta S^{\circ} = -23(4)$ eu for the addition of PMe₃ and $\Delta H^{\circ\prime} = -3.0 \, (0.7) \, \text{kcal mol}^{-1}$ and $\Delta S^{\circ\prime} = -6(3) \, \text{eu}$ for the addition of PMe₂Ph, indicating that the addition is exothermic. The experimental measurement allows a benchmarking study to select a proper DFT method to describe the current system. Of the DFT methods tested, M06 has demonstrated superior performance in calculating binding energy of a bimolecular reaction. The calculated reaction pathways show that $W(CH_2SiMe_3)_3(\equiv CSiMe_3)(1)$ reacts with PR_3 to form $W(CH_2SiMe_3)_3(\equiv CSiMe_3)(PR_3)(PR_3 = PMe_3, 3a;$ PMe₂Ph, **3b**), and the adduct then undergoes α -H migration to form W(CH₂SiMe₃)₂(=CHSiMe₃)₂(PR₃) (**4a**, **4b**). **4a** and **4b** are found to be thermodynamically and kinetically stable intermediates. The calculations also suggest a pathway in the formation of the alkyl alkylidene alkylidyne complex W(CH₂SiMe₃)- $(=CHSiMe_3)(\equiv CSiMe_3)(PR_3)_2$ (5a).

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

High-oxidation-state metal alkylidene and alkylidyne complexes containing M=C and M≡C bonds, respectively, often demonstrate unique chemistry and have been extensively studied [1-4]. The alkylidene and alkylidyne complexes usually contain ligands such as neopentyl (-CH₂CMe₃) and trimethylsilylmethyl ligands (-CH₂SiMe₃) that are free of β-H atoms [1–4]. Complexes containing a –CH₂SiMe₃ ligand with a β-Si atom often show properties different from those containing its neopentyl –CH₂CMe₃ analog. For example, Clark and Schrock reported that the reactions of W(CH₂CMe₃)₃-(≡CCMe₃) with phosphines PMe₃ and Me₂PCH₂CH₂PMe₂ (DMPE) give the bis-phosphine/chelating phosphine products $W(CH_2CMe_3)(=CHCMe_3)(=CCMe_3)(PMe_3)_2$ and $W(CH_2CMe_3)$ - $(=CHCMe_3)(\equiv CCMe_3)(DMPE)$ through α -H abstraction [3b]. The structure of the latter was determined by Churchill and Youngs [5]. In comparison, we have found that $W(CH_2SiMe_3)_3(\equiv CSiMe_3)$ (1) reacts with PMe₃, PMe₂Ph, and DMPE, forming phosphine adducts W(CH₂SiMe₃)₃(\equiv CSiMe₃)(PR₃) (PR₃ = PMe₃, **3a**; PMe₂Ph, **3b**) (Scheme 1) and W(CH₂SiMe₃)₃(\equiv CSiMe₃)(DMPE-P)(3e)(Scheme 2) containing one free PMe2 group [6]. These adducts undergo α -H migration to form their bis-alkylidene tautomers $W(CH_2SiMe_3)_2(=CHSiMe_3)_2(PR_3)$ (4a, 4b) and $W(CH_2SiMe_3)_2$ -

E-mail addresses: zhangxh@pkusz.edu.cn (X. Zhang), chydwu@ust.hk (Y.-D. Wu), xue@ion.chem.utk.edu (Z.-L. Xue).

(=CHSiMe₃)₂(DMPE-P) (4e). The tautomeric mixtures are in equilibria, and undergo α -H abstraction to eliminate SiMe₄ to form, by reacting with free PR3 and the free PMe2 group in DMPE-P ligand, W(CH₂SiMe₃)(\equiv CHSiMe₃)(\equiv CSiMe₃)(PR₃)₂ (**5a-b**, **6a-b**) (Scheme 1) and $W(CH_2SiMe_3)(=CHSiMe_3)(\equiv CSiMe_3)(DMPE)$ (5e, **6e**) (Scheme 2), respectively [6].

Another example of the difference between -CH₂SiMe₃ and -CH₂CMe₃ ligands is the reactions shown in Scheme 3 [7]. $Ta(=CHR)_2(CH_2SiMe_3)(PMe_3)_2$ (R = SiMe₃, CMe₃) reacts with silanes to give metallocyclic products. In comparison, its neopentyl analog, Ta(=CHCMe₃)₂(CH₂CMe₃)(PMe₃)₂, forms unknown species

We have been interested in the tautomerizations between alkyl alkylidynes (3a, 3b, 3e) and bis-alkylidenes (4a, 4b, 4e) in Schemes 1 and 2 because these were among the few reported direct observation of exchanges through α -H migration [1j,m], although such exchanges had been implicated in several systems [8-12]. The tautomerization of silyl alkylidyne (Me₃CCH₂)₂W(\equiv CCMe₃)(SiBu^tPh₂) with bis-alkylidene (Me₃CCH₂)W(=CHCMe₃)₂(SiBu^tPh₂) was, to our knowledge, the first directly observed exchange [13].

In the current work, we studied the thermodynamics of the reversible addition of PMe₃ and PMe₂Ph to 1 forming 3a and 3b, respectively, in order to probe the unusual chemistry of 1 in detail. Density functional theory (DFT) studies have been performed to: (1) understand the thermodynamics and kinetics of the transformation from 1 to 4; (2) explain why 4 is a relatively stable intermediate along the pathway to 5.

^b Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA

^{*} Corresponding authors.

Scheme 1. Reactions of mono-dentate phosphines with 1 [6a,b,d].

SiMe₃ SiMe₃
$$K_{eq}$$
 K_{eq} Me_3Si Me_3Si Me_3Si Me_3Si Me_2P PMe_2 Me_2P PMe_2 Me_2P PMe_2 Me_2 Me

Scheme 2. Reaction of the bidentate phosphine DMPE with 1 [6c].

Scheme 3. Reactions of $PhR'SiH_2$ (R' = Me, Ph, CH_2SiH_2Ph) with phosphine alkylidene complexes.

2. Material, methods and computational details

All manipulations were performed under a dry nitrogen atmosphere with the use of either a dry box or standard Schlenk techniques. Solvents were purified by distillation from potassium/benzophenone ketyl. Toluene- d_8 was dried over activated molecular sieves and stored under N₂. WCl₆ was freshly sublimed under vacuum. W(CH₂SiMe₃)₃(\equiv CSiMe₃) (1) [3d] was prepared from (MeO)₃WCl₃ and six equivalents of Me₃SiCH₂MgCl by a procedure similar to that used in the preparation of W(CH₂CMe₃)₃(\equiv CCMe₃) [14]. ¹H NMR spectra were recorded on a Bruker AMX-400 spectrometer.

For the thermodynamic studies, the equilibrium constants $K_{\rm eq1}$ were obtained from at least five separate experiments at a given temperature, and their averages are listed in Table 1. The maximum random uncertainty in the equilibrium constants were combined with the estimated systematic uncertainty of ca. 5%. The total uncertainties in the equilibrium constants were used in the $\ln K_{\rm eq1}$ versus 1000/T plot in Fig. 1 and the error propagation calculations. The estimated uncertainty in the temperature measurements for an NMR probe was 1 K. The enthalpy (ΔH°) and entropy (ΔS°) changes were calculated from an unweighted nonlinear least-squares procedure. The uncertainties in ΔH° and ΔS° were computed from the following error propagation formulas, which were derived from -RT ln $K_{\rm eq1} = \Delta H^{\circ} - T\Delta S^{\circ}$ [13].

$$\begin{split} \left(\sigma\Delta H^{\circ}\right)^{2} &= \frac{R^{2}\left(T_{\max}^{2}T_{\min}^{4} + T_{\min}^{2}T_{\max}^{4}\right)}{\left(T_{\max} - T_{\min}\right)^{4}} \left[\ln\left(\frac{K_{\text{eq1(max)}}}{K_{\text{eq1(min)}}}\right)\right]^{2} \left(\frac{\sigma T}{T}\right)^{2} \\ &+ \frac{2R^{2}T_{\max}^{2}T_{\min}^{2}}{\left(T_{\max} - T_{\min}\right)^{2}} \left(\frac{\sigma K_{\text{eq1}}}{K_{\text{eq1}}}\right)^{2} \end{split} \tag{1}$$

Download English Version:

https://daneshyari.com/en/article/1334540

Download Persian Version:

https://daneshyari.com/article/1334540

<u>Daneshyari.com</u>