Polyhedron 58 (2013) 106-114

Contents lists available at SciVerse ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Isolation and X-ray structures of four Rh(PCP) complexes including a Rh(I) dioxygen complex with a short O–O bond

Yukiko Hayashi¹, David J. Szalda^{*,2}, David C. Grills, Jonathan C. Hanson, Kuo-Wei Huang³, James T. Muckerman, Etsuko Fujita^{*}

Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973-5000, United States

ARTICLE INFO

Article history: Available online 13 October 2012

Keywords: Rhodium Pincer PCP Rh–O₂ complex

ABSTRACT

The reaction of RhCl₃·H₂O with ¹Bu₂P(CH₂)₅PⁱBu₂ afforded several complexes including [Rh^{III}(H)Cl{¹Bu₂-P(CH₂)₂CH(CH₂)₂PⁱBu₂]] (**1**), [Rh^{III}HCl₂(¹Bu₂P(CH₂)₅PⁱBu₂]] (**2**), [Rh¹Cl{¹Bu₂P(CH₂)₂CH=CHCH₂PⁱBu₂]] (**3**) and [Rh¹Cl{¹Bu₂PCH₂C(O)CH=CHCH₂PⁱBu₂]] (**4**). X-ray crystal structures of **3** and **4** showed that the C=C bond on the C₅ unit of ¹Bu₂P(CH₂)₅PⁱBu₂ is bound to Rh(1) in a η^2 configuration. In **4**, the Rh atom has a trigonal pyramidal coordination geometry. The X-ray crystal structure of **2** consists of two rhodium(III) centers bridged by two ¹Bu₂P(CH₂)₅PⁱBu₂ ligands with two phosphorus atoms, one from each ligand, trans to one another. The crystal structure of the rhodium oxygen adduct with 1,3-bis(di-*t*-butyl-phosphinomethyl)benzene [RhO₂{¹Bu₂PCH₂(C₆H₃)CH₂PⁱBu₂]] (**5**) was also investigated. In this species the O₂ is η^2 coordinated to the Rh(1) center with asymmetric Rh–O bond lengths (2.087(7) and 1.998(8) Å). The O–O bond distance is short (1.337(11) Å) with v_{O-O} of 990.5 cm⁻¹. DFT calculations on complex **5** yielded two η^2 -O₂ structures that differed in energy by only 0.76 kcal/mol. The lower energy one (**5a**) had near C₂ symmetry and generally good agreement with the experimental structure. The calculated UV–Vis and IR spectra of complex **5** are in excellent agreement with experiment.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Since Moulton and Shaw reported the first examples of transition metal complexes with a new class of tridentate ligands (called PCP ligands) in 1976, [1] PCP pincer complexes (a generalized form **A** is shown in Fig. 1) have been prepared for numerous combinations of metal (M), alkyl group (R), and ligand (X) trans to the carbon ligand (X = H, halide, alkyl, etc.) [2,3]. In general, these complexes are readily prepared by cyclometallation or oxidative addition of 1,3-bis(dialkylphosphinomethyl)benzene derivatives with proper transition metal precursors. With the use of 2-methyl or ethyl-1,3-bis(dialkylphosphinomethyl)benzene, cyclometallation involving C_{aryl} – C_{alkyl} bond activation has been found to occur and has been studied extensively to get a detailed insight into the mechanism of C–C bond cleavage [4–8]. Further, PCP pincer complexes themselves have been successfully used in various reactions, e.g., dehydrogenation of alkanes [9-12], Kharasch addition reactions [13], Heck coupling reactions [14,15], O₂ activation [16,17] and even activation or reduction of CO₂ [18,19]. On the other hand, Shaw and co-workers studied metal complexation by diphosphine ligands of the type ^tBu₂P(CH₂)₂CHR(CH₂)₂P^tBu₂ (R = H, Me) with platinum group metals (Rh, Ir, Pd and Pt), and reported several PCP pincer-type complexes with ${^{t}Bu_{2}P(CH_{2})_{2}}_{2}CR$: e.g., $[RhHCl(^{t}Bu_{2}P(CH_{2})_{2}CH(CH_{2})_{2}P^{t}Bu_{2})]$ (**1** shown in Scheme 1) [20–25]. The bulky diphosphine ligand, ${}^{t}Bu_{2}P(CH_{2})_{2}CHR(CH_{2})_{2}$ P^tBu₂ stabilizes rhodium(I) complexes prepared from [RhHCl(^tBu₂- $P(CH_2)_2CR(CH_2)_2P^tBu_2$ with various loosely bound gaseous molecules such as N₂, H₂, C₂H₄ and CO₂ [26,27], and a few similar complex systems including other metals or diphosphines with the -P^tBu₂ unit have also been investigated [28-32]. However, the formation of pincer-type complexes like 1 is still rare compared with formation of the PCP pincer complexes described above, and even some closely related cyclometallated species formed together with **1** in the reaction of RhCl₃·3H₂O with ${}^{t}Bu_2P(CH_2)_5P^{t}Bu_2$ have never been fully characterized [21,33]. Here, we present a detailed study of the reaction of RhCl₃·3H₂O with ^tBu₂P(CH₂)₅P^tBu₂ under several conditions modified from that reported previously [21], and the established isolation methods of several complexes (1-5) and Xray structures (2-5) including two closely related cyclometallated

^{*} Corresponding author. Tel.: +1 631 344 4356; fax: +1 631 344 5815. *E-mail address:* fujita@bnl.gov (E. Fujita).

¹ Current address: Electronics Materials Division, Electronics Department, Nagase ChemteX Corporation, 236, Tatsunocho-nakai, Tatsuno, Hyogo 679-4124, Japan.

² Research Collaborator at Brookhaven National Laboratory, Department of Natural Sciences, Baruch College, NY 10010, United States.

³ Current address: KAUST Catalysis Center, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.

species. The O₂ complex, **5** has an unusually short O–O bond distance (1.337(11) Å) with v_{O–O} at 990.5 cm⁻¹.

2. Experimental

2.1. Spectroscopic measurements

NMR spectra were measured on a Bruker Avance 400 MHz spectrometer. FTIR spectra were measured on a Mattson Polaris FT-IR spectrometer or a Thermo Nicolet Nexus 670 spectrometer. Mass spectra (FAB+ and ESI) were obtained at the Institute of Chemical Biology & Drug Discovery Laboratory at Stony Brook University. The compounds were analyzed by X-ray crystallography, NMR, elemental analysis and FAB-mass spectrometry.

2.2. Materials

The solvents used for reaction and recrystallization, were purified prior to use by the following procedures, and stored in an Ar-filled glovebox. Dichloromethane (CH_2Cl_2) and tetrahydrofuran (THF) were distilled with CaH₂ and benzophenone/Na, respectively. Diethylether (Et₂O), ethanol (EtOH), 2-propanol (i-PrOH), 2-methylpridine and H₂O were degassed by freeze-thaw cycles. The deuterized solvents, CDCl₃ and d₇-DMF were degassed, and d₇-DMF was further dried over activated molecular sieves. CH₂Cl₂ and hexane were bubbled by Ar before using as eluents for column chromatography. [${}^{t}Bu_{2}PH(CH_{2})_{5}PH^{t}Bu_{2}$]Br₂, ${}^{t}Bu_{2}P(CH_{2})_{5}P^{t}Bu_{2}$, [RhHCl(${}^{t}Bu_{2}P(CH_{2})_{2}CH(CH_{2})_{2}P^{t}Bu_{2}$]] (1) and [RhHCl₂{ $}^{t}Bu_{2}P(CH_{2})_{5}-P^{t}Bu_{2}$]₂ (2) were prepared by modified methods of the procedures reported by Shaw et al., [34,21] as shown below.

2.2.1. Preparation of 1,5-bis(di-t-butylphosphonio)pentane dibromide, [^tBu₂PH(CH₂)₅PH^tBu₂]Br₂

Di-*t*-butylphosphine (4.95 g, 33 mmol) was added to a solution of 1,5-dibromopentane (3.86 g, 16 mmol) in iso-butyl methyl ketone (2.5 ml) and the mixture was heated under reflux (at 120 °C) for 7–8 h, and then cooled to ambient temperature. The white precipitate was collected by filtration and recrystallized from CH₂Cl₂/iso-butyl methyl ketone at 5 °C to give pure [^tBu₂PH(CH₂)₅PH^tBu₂]Br₂ as a white crystalline powder, (3.92 g, 47%). Since this salt is very hygroscopic, the container with this salt was stored in a glovebox. ¹H NMR (CDCl₃, rt): δ 8.17 (2H, PH, dt, ¹J(PH) = 476 Hz, ³J(H–CH₂) = 4.3 Hz), 2.49 (4H, P-CH₂, m), 2.06 (4H + 2H, –(CH₂)₃–, m), 1.56 (36H, –^tBu, d, ³J_{PH} = 16 Hz). The ¹H NMR signals assigned to PH in CDCl₃ shift remarkably depending on the concentration, while the other signals were consistent with those reported before [34].

2.2.2. Preparation of 1,5-bis(di-t-butylphosphino)pentane, ^tBu₂P(CH₂)₅P^tBu₂

A solution of 1,5-bis(di-*t*-butylphosphonio)pentane dibromide (3.90 g, 7.5 mmol) in degassed water (5 ml) was added dropwise to a solution of sodium hydroxide (2.99 g, 75 mmol) in water (10 ml) with a bottom layer of CH_2Cl_2 (20 ml). The reaction mixture was stirred vigorously for 1.5 h at room temperature and then extracted by CH_2Cl_2 . The extract was washed well with water until

the layer of water reached pH 7–7.5 and was then dried by Na₂SO₄. The crude residue after evaporation of the extract was purified by Al₂O₃ column chromatography with CH₂Cl₂ as an eluent, to give a colorless liquid as the product (1.87 g, 70%). ¹H NMR (d₇-DMF, rt): δ 1.54 (4H + 2H, –(CH₂)₃–, m), 1.40 (4H, P-CH₂, m), 1.10 (36H, –^tBu, d, ³J_{PH} = 11 Hz); ¹³P NMR (d₇-DMF, rt): δ 28.5. ¹H and ³¹P NMR spectral data for P-^tBu of this compound in CDCl₃ were consistent with those reported previously [34].

2.2.3. Preparation of the rhodium(I) olefin complex, [RhCl{^tBu₂P(CH₂)₂ CH=CHCH₂P^tBu₂]] (**3**)

A suspension of $RhCl_3 \cdot 3H_2O$ (82 mg, 0.31 mmol) with ^tBu₂P(CH₂)₅P^tBu₂ (175 mg, 0.49 mmol) in THF (4 ml)/H₂O (0.1 ml) was heated at 72-74 °C for 6 days. The reddish precipitate of 2 formed at once, completely disappeared to give 3 as the main product. After purification by a short column with Al₂O₃, an orangeyellow solid was obtained as 3 in 80% yield based on [Rh]. An orange crystalline solid was obtained by recrystallization from CH_2Cl_2 /hexane (v/v 1/3), washed by cold hexane (1 ml \times 2) and stored in an Ar-filled glovebox: FAB-mass (positive): m/z 496 (parent); Anal. Calc. For C21H44Cl1P2Rh1: C, 50.76; H, 8.93; Cl, 7.14. Found: C, 50.71; H, 9.28; Cl, 7.22%. ¹H NMR (C₆D₆, rt): δ 4.15 (1H, HC=C, m), 2.62 (2H, $-CH_2-$, m), 2.26 (1H, HC=C, m), 1.99 (2H, $-CH_2-$, m), 1.54 (9H, $-{}^{t}Bu$, d, ${}^{3}J_{PH}$ = 13 Hz), 1.44 (9H, $-{}^{t}Bu$, d, ${}^{3}J_{PH}$ = 12 Hz), 1.32 (9H, $-{}^{t}Bu$, d, ${}^{3}J_{PH}$ = 12 Hz), 1.12 (9H, $-{}^{t}Bu$, d, ${}^{3}J_{PH}$ = 13 Hz), 0.85 (2H, $-CH_2-$, m); (CDCl₃, rt): δ 4.24 (1H, HC=C, m), 2.90 (1H, -CH₂-, m), 2.50 (1H, HC=C, m), 2.27 (1H, -CH₂-, m), 2.12 (1H, -CH₂-, m), 1.63 (1H, -CH₂-, m), 1.58 (9H, -^tBu, d, ${}^{3}J_{PH} = 13$ Hz), 1.44 (9H, $-{}^{t}Bu$, d, ${}^{3}J_{PH} = 12$ Hz), 1.33 (9H, $-{}^{t}Bu$, d, ${}^{3}J_{PH} = 12$ Hz), 1.24 (9H, $-{}^{t}Bu$, d, ${}^{3}J_{PH} = 13$ Hz), 1.09 (2H, $-CH_{2}-$, m); ^{13}C NMR (CDCl₃, rt): δ 69.6, 36.8, 5.8, 35.1, 34.7, 33.0, 31.3, 30.0, 29.8, 29.4, 28.8, 17.4; ³¹P NMR (CDCl₃, rt): 79.5, -35.1. In the ¹H NMR spectrum of this compound in CDCl₃, the four doublets assigned to -tBu were characteristic and consistent with those reported previously [21].

2.2.4. Preparation of the dirhodium complex, ($[RhHCl_2{^tBu_2P(CH_2)_5 P^tBu_2}]_2$ (2)

A suspension of RhCl₃·3H₂O (100 mg, 0.38 mmol) with ¹Bu₂P(CH₂)₅P^tBu₂ (175 mg, 0.49 mmol) in i-PrOH (4.9 ml)/H₂O (0.1 ml) was heated at 68–70 °C for 65 h. The color of the suspension changed from chocolate-brown to brown–pink. After cooling to room temperature, the brown–pink solid was collected by filtration and washed well by Et₂O. The brown–pink solid was dried under vacuum to give **2** in 76% yield based on [Rh]. The filtrate contained complexes **1** and **3** with a ratio of 1:2. ¹H NMR (CDCl₃, rt): δ 2.55 (8H, P-CH₂, m), 1.66 (8H, –CH₂–, m), 1.50 (36H, –^tBu, t, ³J_{PH} + ⁵J_{PH} = 13 Hz), 1.44 (36H, –^tBu, d, ³J_{PH} + ⁵J_{PH} = 12 Hz), 1.22 (4H, –CH₂–, m), –31.3 (2H, Rh-H, dt, ²J_{PH} = 12 Hz, ¹J_{RhH} = 32 Hz); ³¹P NMR (CDCl₃, rt): 49.0. In the ¹H NMR spectrum of this compound in CDCl₃, the two triplets assigned to –^tBu were consistent with those reported previously [21].

2.2.5. Preparation of the cyclometallated complex, [RhHCl^tBu₂P(CH₂)₂ CH(CH)₂P^tBu₂]] (1)

A mixture of the dirhodium complex **2** (115 mg, 0.11 mmol) and 2-methylpyridine (1.4 ml) was warmed to \sim 100 °C for 30 min. The

Scheme 1. Structures of various PCP complexes.

Download English Version:

https://daneshyari.com/en/article/1334551

Download Persian Version:

https://daneshyari.com/article/1334551

Daneshyari.com