

Contents lists available at SciVerse ScienceDirect

Polyhedron

Water-soluble bis(4′-[2,2,2-tris(hydroxymethyl)ethoxy]-2,2′:6′,2″-terpyridine)metal complexes

Edwin C. Constable, Catherine E. Housecroft *, Niamh S. Murray, Jennifer A. Zampese

Department of Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland

ARTICLE INFO

Article history: Received 16 January 2013 Accepted 11 February 2013 Available online 18 February 2013

Keywords: 2,2':6',2"-Terpyridine Pentaerythritol Crystal structure Water-soluble Coordination

ABSTRACT

A series of homoleptic metal complexes containing the pentaerythritol-functionalized ligand 1 (4'-(2,2,2-tris(hydroxymethyl)ethoxy)-2,2':6',2''-terpyridine) has been synthesized. In MeOH and under microwave conditions, the 2,2,2-tris(hydroxymethyl)ethoxy substituent is cleaved and replaced by a methoxy group originating from the solvent. This has been confirmed from the single crystal structure of $[Zn(2)_2][PF_6]_2$ (2 = 4'-methoxy-2,2':6',2''-terpyridine). The complexes $[Zn(1)_2][OAc]_2$, $[Fe(1)_2]CI_2$ and $[Co(1)_2][PF_6]_2$ were therefore prepared under mild conditions; $[Co(1)_2][PF_6]_2$ readily oxidizes to $[Co(1)_2][PF_6]_3$; the conversion of the paramagnetic $[Co(1)_2]^{2+}$ to diamagnetic $[Co(1)_2]^{3+}$ is readily monitored by 1H NMR spectroscopy. The homoleptic complexes are hygroscopic and are highly soluble in water; the most soluble is $[Zn(1)_2][OAc]_2$ (71 mmol dm $^{-3}$). Structural data for 1, $[Zn(1)_2][PF_6]_2$, $4\{[Zn(1)_2][PF_6]_2\}$ ·3MeCN, $[Zn(1)(OAc-O)_2]$ ·2MeOH and $2\{[Co(1)_2][PF_6]_3\}$ ·1.5MeCN·1.5H₂O confirm that dominant packing forces involve hydrogen bonds between pendant 2,2,2-tris(hydroxymethyl)ethoxy units.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the next 50 years, materials chemists will be increasingly challenged with addressing the anticipated increase in global demand for energy against a background of diminishing fossil fuels, social and political pressure to reduce the reliance on nuclear power and legislative obligations to minimize the release of greenhouse gases [1]. Many strategies are currently under investigation and an attractive closed cycle involves the combination of the splitting of water into dihydrogen and dioxygen using the energy from solar photons [2–5] followed by the exothermic formation of water in a fuel cell [6] or the conversion into compounds in which the chemical energy is stored (chemical hydrogen storage) [7–14].

Water cannot be directly split into dihydrogen and dioxygen by means of visible light, and a photocatalyst or photoelectrochemical catalyst is required [15–21]. Both homogeneous [22–25] and heterogeneous catalysts [15] are of interest and we have concerned ourselves with the design of ruthenium complexes for use as homogeneous photocatalysts. Typical photocatalysts are based upon $\{Ru^{II}(bpy)_3\}$ (bpy = 2,2′-bipyridine) or $\{Ru^{II}(tpy)_2\}$ (tpy = 2,2′: 6′,2″-terpyridine) scaffolds. Homogeneous photocatalysts for water splitting should be water soluble and conventional strategies for solubilising intrinsically hydrophobic cations with oligopyridine ligands rely upon the use of chloride or sulfate salts, the former

being inherently unsuitable for application in oxidative conditions. We have previously described the preparation and utilization of the hydrogensulfate salts [Ru^{II}(Mepytpy)₂][HSO₄]₄ (Mepytpy = 4'-(4-*N*-methylpyridinio)-2,2':6',2"-terpyridine, Scheme 1) as co-catalysts for water oxidation [26] as well as the development of watersoluble sulfonated ligands for the solubilization of {Ru^{II}(bpy)₃} derivatives [27]. In unrelated work we have investigated bpy and tpy ligands functionalized with mono- and polysaccharides and commented upon their high water solubility [28–33]. Although saccharides are unsuitable for use as ligands in water splitting reactions owing to their facile oxidation, we considered the investigation of other polyhydroxylated ligands and now describe preliminary studies of the coordination chemistry of the pentaerythritol-functionalized ligand **1** [34].

2. Experimental

2.1. General

Bruker Avance III-400, Avance III-500, or Avance III-600 NMR spectrometers were used to record $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra, and chemical shifts were referenced to residual solvent peaks with respect to $\delta(\mathrm{TMS})$ = 0 ppm. Solution absorption spectra were recorded on an Agilent 8453 spectrophotometer, and FT-IR spectra of solid samples on a Shimadzu 8400S instrument with Golden Gate accessory. Electrospray ionization (ESI) mass spectra were measured using a Bruker esquire 3000^{plus} mass spectrometer. A Biotage Initiator 8 reactor was used for the syntheses under microwave

^{*} Corresponding author. Fax: +41 61 267 1018. E-mail address: catherine.housecroft@unibas.ch (C.E. Housecroft).

Scheme 1. Structures of mepytpy and ligands **1** and **2**, with labeling for NMR spectroscopic assignments.

conditions. TGA-MS measurements were carried out using a Mettler Toledo TGA/SDTA851^e with Pfeiffer Vacuum Thermostar™. Ligand **1** was prepared according to the literature method [34].

2.2. $[Zn(2)_2][PF_6]_2$

Zn(OAc)₂·2H₂O (9.00 mg, 41.0 μmol) was added to a solution of 1 (30 mg, 82.0 µmol) in MeOH (4 cm³) and the mixture was heated in the microwave reactor for 60 min at 120 °C. Excess aqueous NH₄PF₆ was added and the precipitate collected by filtration, washed with H_2O , and then Et_2O , and dried in vacuo. $[Zn(\mathbf{2})_2][PF_6]_2$ was isolated as a white solid (39.7 mg, 45.0 µmol, 91%). ¹H NMR (400 MHz, CD₃CN) δ /ppm 8.55 (d, J = 8.1 Hz, 4H, H^{A3}), 8.19 (s, 4H, H^{B3}), 8.12 (t, J = 7.7 Hz, 4H, H^{A4}), 7.76 (d, J = 5.0 Hz, 4H, H^{A6}), 7.37 (m, 4H, H^{A5}), 4.29 (s, 6H, H^{Me}). ESI MS 735.1 [Zn(**2**)₂PF₆]⁺ (base peak, calc. 735.1). IR (solid, v/cm^{-1}) 1439m, 1418s, 1367m, 1232m, 1157s, 1059s, 1036s, 1013s, 906s, 824w, 793w, 746m, 727m, 696m, 660m, 631m, 554w, 488m, 474m, 469m, 455m, 438w, 430m, 405w, 399m, 384m, 380w UV-Vis (MeOH, $1.0 \times 10^{-5} \text{ mol dm}^{-3}$) $\lambda/\text{nm} 203 \ (\epsilon/\text{dm}^3 \text{ mol}^{-1} \text{ cm}^{-1} 42500)$, 244 (40100), 273 (30000), 310 (21200), 322 (23700). Anal. Calc. for C₃₄₋ H₃₄F₁₂N₆O₃P₂Zn requires: C, 43.58; H, 2.97; N, 9.53. Found: C, 43.22; H, 3.12; N, 9.54%.

2.3. [Zn(**2**)₂][OAc]₂

Zn(OAc)₂·2H₂O (28.0 mg, 95.0 μmol) was added to a solution of 4′-methoxy-2,2′:6′,2″-terpyridine (50 mg, 190.0 μmol) in MeOH (5 cm³) and the mixture was stirred at room temperature for 60 min, after which, the solvent was removed *in vacuo*. [Zn(2)₂][-OAc]₂ was isolated as a white solid (55.7 mg, 78.5 μmol, 83%). 1 H NMR (500 MHz, CH₃OD) δ /ppm 8.75 (d, 4H, H^{A3}), 8.46 (s, 4H, H^{B3}), 8.19 (t, 4H, H^{A4}), 7.85 (d, 4H, H^{A6}), 7.46 (m, 4H, H^{A5}), 4.32 (s, 6H, H^{Me}). 13 C NMR (126 MHz, CH₃OD) δ /ppm 173.6 (C^{B4}), 169.3 (C^{B2}), 148.7 (C^{A6}), 144.5 (C^{A2}), 142.3 (C^{A4}), 128.8 (C^{A5}), 124.2 (C^{A3}), 110.8 (C^{B3}), 57.92 (C^{Me}). ESI-MS m/z 386.1 [M-OAc-2]* (calc. 386.1), 295.1 [M-2OAc]²⁺ (calc. 295.1). IR (solid, v/cm⁻¹) 2358s, 1704s, 1575s, 1555s, 1388s, 1229s, 1031m, 1014s, 793w,

668m, 659s, 621m, 552w, 525w, 515w, 511w. UV–Vis (MeOH, $1.0 \times 10^{-5} \text{ mol dm}^{-3}$) λ/nm 203 ($\epsilon/\text{dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$ 38200), 244 (34900), 273 (25800), 310 (18500), 335 (21000). *Anal.* Calc. for $C_{36}H_{32}N_6O_6Zn\cdot 2H_2O$ requires: C, 57.95; H, 4.86; N, 11.26. Found: C, 58.04; H, 4.53; N, 11.03%.

2.4. [Fe(1)₂]Cl₂

Anhydrous FeCl₂ (17.3 mg, 0.14 mmol) was added to a solution of 1 (100 mg, 0.27 mmol) in EtOH (10 cm³) and the mixture was stirred at room temperature for 1 h to give a dark purple solution. Solvent was removed in vacuo to yield a dark purple solid which was purified on a Sephadex column (LH 20, MeOH). [Fe(1)2]Cl2 was isolated as a purple solid (85.6 mg, 99.4 µmol, 71%). ¹H NMR (500 MHz, CD₃OD) δ /ppm 8.79 (s, 4H, H^{B3}), 8.67 (d, J = 8.1 Hz, 4H, H^{A3}), 7.93 (td, 4H, J = 7.7, 1.5 Hz, H^{A4}), 7.27 (d, J = 5.4 Hz, 4H, H^{A6}), 7.17 (m, 4H, H^{A5}), 4.67 (s, 4H, H^{a}), 3.91 (s, 12H, H^{b}). ^{13}C NMR (126 MHz, CD₃OD) δ /ppm 169.7 (C^{B4}), 161.0 (C^{B2}), 159.7 (C^{A2}), 154.0 (C^{A6}), 139.7 (C^{A4}), 128.4 (C^{A5}), 124.7 (C^{A3}), 112.4 (C^{B3}) , 69.9 (C^{a}) , 61.8 (C^{b}) , 47.4 (C^{c}) . ESI MS m/z 825.2 $[Fe(1)_{2}Cl]^{+}$ (calc. 825.2), 789.3 $[Fe(1)(1-H)]^+$ (base peak, calc. 789.2), 757.3 $[2(1)+Na]^+$ (calc. 757.3). IR (solid, v/cm^{-1}) 3597vs, 3310s, 3221vs, 2957vs, 2883vs, 1616m, 1562s, 1483s, 1439m, 1366s, 1225m, 1165vs, 1030m, 1003s, 827m, 785m, 752s, 555m, 463m, 457m, 426w, 415w, 363m, 353w, 343w. UV-Vis (MeOH, 1.0×10^{-5} mol dm⁻³) λ /nm 204 (ε /dm³ mol⁻¹ cm⁻¹ 123800), 244 (66100), 272 (75000), 316 (54000), 362 (7300), 556 (15500). Anal Calc. for C₄₀H₄₂Cl₂FeN₆O₈·10H₂O requires: C, 48.11; H, 6.24; N, 7.65. Found: C, 47.99; H, 6.05; N, 7.32%.

2.5. $[Zn(1)_2][OAc]_2$

Zn(OAc)₂·2H₂O (29.8 mg, 0.14 mmol) was added to a solution of 1 (100 mg, 0.27 mmol) in MeOH (10 cm³) and the mixture stirred at room temperature for 1 h. Solvent was removed in vacuo and the product purified on a Sephadex column (LH 20, MeOH) to yield [Zn(1)₂][OAc]₂ as an off-white solid (88.7 mg, 96.6 umol, 69%), ¹H NMR (500 MHz, CD₃OD) δ /ppm 8.76 (d. I = 8.2 Hz, 4H, H^{A3}), 8.50 (s, H^{B3}) 8.19 (td, I = 7.6, 1.7 Hz, 4H, H^{A4}), 7.85 (br, 4H, H^{A6}), 7.46 (m, 4H, H^{A5}), 4.58 (s, 4H, H^a), 3.84 (s, 12H, H^b), 1.87 (s, 6H, H^{AcO}). ¹³C NMR (126 MHz, CD₃OD) δ /ppm 173.5 (C^{B4}), 152.4 (C^{B2}), 149.6 (C^{A2}), 148.6 (C^{A6}), 142.5 (C^{A4}), 128.6 (C^{A5}), 124.2 (C^{A3}), 111.2 (C^{B3}) , 70.1 (C^{a}) , 61.9 (C^{b}) , 47.3 (C^{c}) , 24.2 (C^{AcO}) . ESI MS m/z 797.2 $[Zn(1)(1-H)]^+$ (calc. 797.2), 757.3 $[2(1)+Na]^+$ (base peak, calc. 757.3), 390.2 [1+Na]⁺ (calc. 390.1). IR (solid, v/cm^{-1}) 1439m, 1418s, 1367m, 1232m, 1157s, 1059s, 1036s, 1013s, 906s, 824w, 793w, 746m, 727m, 696m, 660m, 631m, 554w, 488m, 474m, 469m, 455m, 438w, 430m, 405w, 399m, 384m, 380w. UV/VIS (MeOH, $1.0 \times 10^{-5} \text{ mol dm}^{-3}$) λ/nm 203 $(\epsilon/\text{dm}^3 \text{ mol}^{-1} \text{ cm}^{-1})$ 83800), 245 (68200), 274 (55900), 310 (35100), 322 (36300). Anal. Calc. for C₄₄H₄₈N₆O₁₀Zn·11H₂O requires: C, 47.34; H, 6.32; N, 7.53. Found: C, 47.99; H, 6.05; N, 7.32%.

2.6. $[Co(1)_2][PF_6]_2$ and $[Co(1)_2][PF_6]_3$

Co(BF₄)₂·6H₂O (46.4 mg, 0.14 mmol) was added to a solution of **1** (100 mg, 0.27 mmol) in MeOH (10 cm³) and the mixture stirred at room temperature under argon for 1 h. An excess of aqueous NH₄PF₆ was then added and the solvent was removed *in vacuo* to give a brown-orange solid (108.3 mg, 0.11 mmol, 80%). After initial analysis of the predominantly cobalt(II) complex was completed, H₂O₂ and activated charcoal were added to fully oxidize the metal to cobalt(III). This was purified on a Sephadex column (LH 20, H₂O) to yield pure $[Co(1)_2][PF_6]_3$ as a yellow-orange solid (65.9 mg, 53.6 µmol, 40%). $[Co(1)_2][PF_6]_2$: ¹H NMR (600 MHz, CD₃CN) δ /ppm 112 (br, H^{A6}), 75.5 (s, H^{A3}) 70.6 (s, H^{B3}), 34.6 (s, H^{A5}), 15.27 (s, H^a),

Download English Version:

https://daneshyari.com/en/article/1334587

Download Persian Version:

https://daneshyari.com/article/1334587

<u>Daneshyari.com</u>