# Polyhedron 44 (2012) 138-142

Contents lists available at SciVerse ScienceDirect

# Polyhedron



journal homepage: www.elsevier.com/locate/poly

# Synthesis, characterization and crystal structures of Hg<sup>II</sup> complexes with asymmetric ortho-functionalized 1,3-bis(aryl)triazenide ligands

Mohammad Kazem Rofouei<sup>a,\*</sup>, Jafar Attar Gharamaleki<sup>a</sup>, Mohammad Reza Melardi<sup>b</sup>, Seyed Mahdi Hosseini<sup>a</sup>, Fatemeh Hosseinzadeh<sup>a</sup>, Mitra Peyman<sup>b</sup>, Atefeh Ghannadan<sup>b</sup>, Behrouz Notash<sup>c</sup>, Giuseppe Bruno<sup>d</sup>, Hadi Amiri Rudbari<sup>d</sup>

<sup>a</sup> Faculty of Chemistry, Tarbiat Moallem University, Tehran, Iran

<sup>b</sup> Department of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran

<sup>c</sup> Department of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran

<sup>d</sup> Dipartimento di Chimica Inorganica, Universita di Messina, Messina, Italy

#### ARTICLE INFO

Article history: Received 28 March 2012 Accepted 19 June 2012 Available online 28 June 2012

Keywords: Mercury(II) Triazene X-ray crystal structure  $\pi \cdots \pi$  Stacking  $C-H \cdots \pi$  interaction

# 1. Introduction

# Hydrogen-bonding and other types of non-covalent interactions like $\pi \cdots \pi$ and C–H $\cdots \pi$ stacking interactions play an important role in the building of supramolecular systems [1,2]. Aryl triazenes have been studied over several years for their interesting structural, anticancer, and reactivity properties [3-10]. Triazene compounds characterized by having a diazoamino group (-N=NNH-) commonly adopt a *trans* configuration in the solid state. As ligands, the N=NNH moieties can show different types of coordination in metal complexes. They can be monodentate, (N1,N3)-chelating towards one metal atom or (N1,N3)-bridging over two metal atoms [11], toward wide variety of metal transition complexes [12,13]. In these compounds secondary bonds, or interactions, such as hydrogen bonds and metal $\pi$ -aryl interactions, can play an important role in their structural stability [14,15]. In recent years, we have been involved in the complexation of transition metal ions with several triazene compounds as ligands. Starting from different bis(diaryl) symmetric and asymmetric-substituted triazenide as ligand. Recently, we have shown that several complexes of Hg<sup>II</sup> have a remarkable ability to self-assemble in different manners through metal- $\eta^2$ - $\eta^2$ -arene $\pi$ -interactions and non-classical C-H···O

### ABSTRACT

The synthesis of two  $[Hg(L1)_2]$  and  $[Hg(L2)_2]$  complexes using asymmetric triazenes as ligands are reported. The triazene ligands are substituted with cyano and chloride groups in the *ortho* positions of the aryl rings (where HL1 and HL2 are 1-(2-ethoxyphenyl)-3-(2-cyanophenyl)triazene and 1-(2-ethoxyphenyl)-3-(2-chlorophenyl) triazene, respectively). These complexes were prepared by the reaction of corresponding triazenes with Hg(NO<sub>3</sub>)<sub>2</sub> and were characterized by FT-IR, NMR, elemental and single crystal X-ray analyses. Both triazene ligands were found to deprotonate on coordination and act as tridentate chelating ligands forming distorted N<sub>4</sub>O<sub>2</sub> octahedral geometry around Hg<sup>II</sup> atoms. Hydrogen bonds,  $\pi \cdots \pi$  and C-H $\cdots \pi$  stacking interactions help to the stabilization of the resulted frameworks.

© 2012 Elsevier Ltd. All rights reserved.

hydrogen bonding. We have previously reported the synthesis of [1,3-bis(2-methoxyphenyl)]triazene [16]. [1,3-bis(2-ethoxyphenyl)]triazene [17] and [1,3-bis(2-cyanophenyl)]triazene [18] molecules that can act as ligands. Also, we have published the Hg(II) complexes with [1,3-bis(2-methoxyphenyl)]triazene by using HgCl<sub>2</sub> [19], HgBr<sub>2</sub> [20], Hg(CH<sub>3</sub>COO)<sub>2</sub> and Hg(SCN)<sub>2</sub> [21] salts as starting materials. More recently, a Hg(II) complex with [1,3bis(2-ethoxyphenyl)]triazene as ligand is reported in which Hg(NO<sub>3</sub>)<sub>2</sub> is used as starting salt [22]. To investigate the effect of the substituted derivatives on coordination behavior of the triazene ligands, we have introduced ortho-, meta- and para-bis(phenyltriazene)benzenes (and substituted derivatives), with two triazene groups in one molecule as ligands. In this work we studied the complexation of 1-(2-ethoxyphenyl)-3-(2-chlorophenyl)triazene and 1-(2-ethoxyphenyl)-3-(2-cyanophenyl)triazene) with nitrate salt of Hg<sup>II</sup> ion in aqueous solution, in order to investigate the stoichiometry of the resulting mercury(II) complexes.

# 2. Experimental

# 2.1. Materials and physical techniques

All chemicals were of analytical grade and were used as commercially obtained without further purification. IR spectra in the frequency range of  $4000-400 \text{ cm}^{-1}$  were recorded using



<sup>\*</sup> Corresponding author. Tel.: +98 2188848949; fax: +98 2188820993. *E-mail address:* rofouei@tmu.ac.ir (M.K. Rofouei).

<sup>0277-5387/\$ -</sup> see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.poly.2012.06.045

Perkin–Elmer RXI spectrometer using KBr disks. Elemental analysis was carried out using a Perkin–Elmer 2400(II) CHNS/O analyzer. Melting points were measured on a Barnstead Electrothermal 9200 apparatus.

### 2.1.1. Synthesis of [(EtOPhNHNNPhCN)], [HL1]

A 100 ml flask was charged with 10 g of ice and 15 ml of water and then cooled to 273 K in an ice-bath. To this was added 2 mmol (0.24 g) of 2-aminobenzonitrile and 2 mmol of hydrochloric acid (36.5%) and 2 ml of water. To this solution was then added a solution containing NaNO<sub>2</sub> (0.32 g) in 3 ml of water during a 15 min period. The *p*H of the solution was then adjusted at 6 by adding a solution containing 1 g of sodium acetate in 10 ml of water. After mixing for 15 min, the obtained solution was added to a solution of 2 mmol (0.26 ml) of o-phenetidine and 2 ml of methanol and 4 ml of water. After mixing for 24 h, the yellow-orange precipitate was filtered off and dried. Our attempt to crystallize this compound was unsuccessful. m.p.: 121–123 °C. IR (KBr): v(cm<sup>-1</sup>): 3331, 2223, 1602, 1513, 1478, 1470, 1437, 1313, 1275, 1231, 1119, 1040, 927, 770, 735, 603. <sup>1</sup>H NMR (300 MHz, d<sub>6</sub>-DMSO): 1.38 (3H, CH<sub>3</sub>), 4.13 (2H, CH<sub>2</sub>), 6.90-7.85 (8H, aromatic), 12 (1H, NH). <sup>13</sup>C NMR (300 MHz, d<sub>6</sub>-DMSO): 14.5, 64.0, 102.2–145.5 ppm. Elemental Anal. calc. for C<sub>15</sub>H<sub>14</sub>N<sub>4</sub>O: C, 67.66; H, 5.26; N, 21.05. Found: C, 67.38; H, 4.26; N, 20.65%.

#### 2.1.2. Synthesis of [(EtOPhNHNNPhCl)] [HL2], (1)

This ligand was also prepared by the same method as described above with this difference that *o*-chlorobenzenamine (0.1 mol, 10.54 ml) was used as starting material. Also, recrystallization was performed by *n*-hexane. m.p.: 73–75 °C. IR (KBr):  $v(cm^{-1})$ : 3336, 3067, 1600, 1530, 1467, 1437, 1410 , 1306, 1259, 1212, 1119, 1045, 1035, 746, 732, 719. <sup>1</sup>H NMR (300 MHz, d<sub>6</sub>-DMSO): 1.38 (3H, CH<sub>3</sub>), 4.12 (2H, CH<sub>2</sub>), 6.92–7.61 (8H, aromatic), 11.72 (1H, NH). <sup>13</sup>C NMR (300 MHz, d<sub>6</sub>-DMSO): 14.7, 64.1, 112.8–146.5 ppm. Elemental *Anal.* calc. for C<sub>14</sub>H<sub>14</sub>N<sub>3</sub>OCl: C, 60.98; H, 5.12; N, 15.24. Found: C, 61.04; H, 5.0; N, 15.29%.

#### Table 1

Crystal data for the compounds (1)-(3).

#### 2.1.3. Synthesis of $[Hg^{II}(EtOPhNNNPhCN)_2]$ , $[Hg(L1)_2]$ , (**2**)

The complex was prepared by mixing 0.27 g (1 mmol) of [1-(2-ethoxyphenyl)-3-(2-cyanophenyl)triazene) in 10 ml of anhydrous methanol with 0.27 g (1 mmol) of mercury(II) nitrate in 10 ml of anhydrous methanol. After being mixed for an hour, a yellow precipitate was obtained. The resultant precipitate after filtration and washing was dissolved in THF. Yellow needle-like crystals suitable for X-ray analysis of the complex (**2**) were obtained by slow evaporation of the solvent in 2 weeks.

 $C_{30}H_{26}HgN_8O_2$  (731.18); m.p.: 219–221 °C. IR (KBr):  $\nu(cm^{-1})$ : 3069, 2977 , 2220, 1589, 1494, 1477, 1372, 1333, 1291, 1275, 1218, 1161, 1120, 1038, 918, 743, 734, 672.  $^{1}\mathrm{H}$  NMR (300 MHz, d<sub>6</sub>-DMSO): 1.16 (3H, CH<sub>3</sub>), 4.10 (2H, CH<sub>2</sub>), 7.00–7.81 (8H, aromatic).  $^{13}\mathrm{C}$  NMR 300 MHz, d<sub>6</sub>-DMSO): 14.0, 64.5, 104.8–151.4 ppm. Elemental Anal. calc. for  $C_{30}H_{26}HgN_8O_2$ : C, 49.31; H, 3.56; N, 15.34. Found: C, 49.60; H, 3.38; N, 15.26%.

# 2.1.4. Synthesis of $[Hg^{II}(EtOPhNNNPhCl)_2]$ , $[Hg(L2)_2]$ , (3)

To a yellow solution prepared by dissolving 0.29 g (1 mmol) of 1-(2-ethoxyphenyl)-3-(2-chlorophenyl)triazene in 40 ml of anhydrous methanol, 0.16 g (0.5 mmol) of mercury(II) nitrate dissolved in 5 ml of anhydrous methanol were added. After 1/2 h stirring, an orange precipitate was formed. It was then filtered off, washed with methanol and dried in vacuum. The solid was dissolved in 20 ml THF. Orange-red plate like crystals suitable for X-ray analysis of the complex, were obtained by slow evaporation of the solvent within a week. IR (KBr):  $\nu$ (cm<sup>-1</sup>): 2881, 1584, 1493, 1470, 1456, 1386, 1286, 1263, 1235, 121, 1196, 1121, 1035, 918, 759, 741, 735. <sup>1</sup>H NMR (300 MHz, d<sub>6</sub>-DMSO): 1.17 (3H, CH<sub>3</sub>), 4.06 (2H, CH<sub>2</sub>), 6.99– 7.73 (8H, aromatic). <sup>13</sup>C NMR (300 MHz, d<sub>6</sub>-DMSO): 14.1, 64.3, 113.0–150.5 ppm. Elemental *Anal.* calc. for C<sub>28</sub>H<sub>26</sub>Cl<sub>2</sub>HgN<sub>6</sub>O<sub>2</sub>: C, 44.84; H, 3.49; N, 11.2. Found: C, 45.18; H, 3.51; N, 11.12%.

# 3. Crystallography

Crystallography measurements were made using a Bruker APEX2 CCD diffractometer for compounds (2) and (3), and also

|                                                   | 1                                                           | 2                                         | 3                                         |
|---------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| Empirical formula                                 | C <sub>14</sub> H <sub>14</sub> ClN <sub>3</sub> O          | $C_{30}H_{26}HgN_8O_2$                    | $C_{28}H_{26}Cl_2HgN_6O_2$                |
| Formula weight                                    | 275.73                                                      | 731.18                                    | 750.04                                    |
| Т (К)                                             | 298                                                         | 293                                       | 293                                       |
| $\lambda$ (Å)                                     | 0.71073                                                     | 0.71073                                   | 0.71073                                   |
| Crystal system                                    | monoclinic                                                  | triclinic                                 | monoclinic                                |
| Space group                                       | $P2_1/c$                                                    | PĪ                                        | C2/c                                      |
| Unit cell dimensions                              |                                                             |                                           |                                           |
| a (Å)                                             | 14.688 (3)                                                  | 7.9472 (3)                                | 22.497 (4)                                |
| b (Å)                                             | 4.4064 (9)                                                  | 8.6812 (3)                                | 9.049 (2)                                 |
| c (Å)                                             | 22.337 (8)                                                  | 20.7136 (7)                               | 14.746 (3)                                |
| $\alpha$ (Å)                                      |                                                             | 91.245 (2)                                |                                           |
| $\beta$ (Å)                                       | 111.46 (2)                                                  | 92.970 (2)                                | 108.89 (2)                                |
| γ (Å)                                             |                                                             | 91.811 (2)                                |                                           |
| $V(Å^3)$                                          | 1345.5 (6)                                                  | 1426.03 (9)                               | 2840.2 (10)                               |
| Z                                                 | 4                                                           | 2                                         | 4                                         |
| $D_{\text{calc}}$ (Mg m <sup>-3</sup> )           | 1.361                                                       | 1.703                                     | 1.754                                     |
| Absorption coefficient (mm <sup>-1</sup> )        | 0.279                                                       | 4.439                                     | 5.646                                     |
| F(000)                                            | 576                                                         | 716                                       | 1464                                      |
| $\theta$ Range for data collection (°)            | 1.96-29.22                                                  | 0.98-30.06                                | 2.68-30.30                                |
| Index ranges                                      | $-20 \leqslant h \leqslant 20, -6 \leqslant k \leqslant 5,$ | $-11 \leq h \leq 11, -12 \leq k \leq 12,$ | $-31 \leq h \leq 31, -12 \leq k \leq 12,$ |
| -                                                 | $-\ 28 \leqslant l \leqslant 30$                            | $-29 \leqslant l \leqslant 29$            | $-20 \leqslant l \leqslant 20$            |
| Reflections collected/unique $(R_{int})$          | 13923/3595 (0.0905)                                         | 57106/8309 (0.052)                        | 58699/4223 (0.031)                        |
| Refinement method                                 | Full-matrix least-squares on $F^2$                          | Full-matrix least-squares on $F^2$        | Full-matrix least-squares on $F^2$        |
| Data/restraints/parameters                        | 3595 / 0 / 177                                              | 8309 / 0 / 370                            | 4223 / 0 / 177                            |
| Goodness-of-fit on $F^2$                          | 1.134                                                       | 1.14                                      | 1.019                                     |
| Final $R[I > 2\sigma(I)]$                         | <i>R1</i> = 0.0742, <i>wR2</i> = 0.1335                     | <i>R</i> 1 = 0.0654, <i>wR</i> 2 = 0.1665 | <i>R</i> 1 = 0.0242, <i>wR</i> 2 = 0.0718 |
| R indices (all data)                              | <i>R1</i> = 0.1346, <i>wR2</i> = 0.1553                     | <i>R</i> 1 = 0.0748, <i>wR</i> 2 = 0.1702 | R1 = 0.0273, wR2 = 0.0737                 |
| Largest differences in peak and hole $(e A^{-3})$ | 0.231 and -0.184                                            | 2.89 and -4.32                            | 0.89 and –1.36                            |

Download English Version:

https://daneshyari.com/en/article/1334734

Download Persian Version:

https://daneshyari.com/article/1334734

Daneshyari.com