ELSEVIER

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

The influence of the substituent [PhNHNH– and EtN(NH₂)–] on the *N*-thiophosphorylated thiosemicarbazides RC(S)NHP(S)(O*i*Pr)₂ crystal design

Damir A. Safin a,*, Michael Bolte b, Elmira R. Shakirova a, Maria G. Babashkina a

^a A.M. Butlerov Chemistry Institute, Kazan State University, Kremlevskaya Street 18, 420008 Kazan, Russian Federation

ARTICLE INFO

Article history: Received 22 October 2008 Accepted 28 November 2008 Available online 13 January 2009

Keywords: Phenylhydrazine Ethylhydrazine Thiosemicarbazide Crystal structures

ABSTRACT

Two N-thiophosphorylated thiosemicarbazides of the common formula $RC(S)NHP(S)(OiPr)_2$ [R = PhNHNH- (1); $EtN(NH_2)$ - (2)] have been synthesized and characterized by IR, 1H and ^{31}P spectroscopy, and the single crystal X-ray diffraction method. Single crystal X-ray diffraction studies showed the thiosemicarbazides form both intra- and intermolecular hydrogen bonds, which in turn lead to polymeric chain formation. Moreover, according to the X-ray data of the phenylsubstituted thiosemicarbazide, the formation of intermolecular $H\cdots\eta^6$ -phenyl interactions were established.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

N-(Thio)phosphorylated (thio)amides $RC(X)NHP(Y)R'_2$ and (thio)ureas $RR'NC(X)NHP(Y)R'_2$ (X = O, S) have been intensively studied [1,2]. The interest is caused not only from the fact that these compounds show a wide variety of complexes with various metal cations but also from the potential of these amidophosphates as agents for extraction and transporting different cations, anions and organic molecules [3], and as ligands in metal complexes used as single source precursors for thin films, nanocrystals and semiconductors [4].

On the other hand, thiosemicarbazides and their derivatives are very attractive compounds among NS donor compounds because of the large number useful biological properties, particularly their antitumor activity [5,6]. Since 4,4',4"-phosphinylidynetrisemicarbazide showed the confirmed activity in Walker carcinosarcoma [7] the preparation of additional hydrazine compounds as potential antitumor agents, particularly (thio)phosphorylated derivatives, was encouraged [8–10]. Both compounds reported, herein, are structurally related to agents possessing antimicrobial and anticancer activities [8,10].

Herein, we report two N-thiophosphorylated thiosemicarbazides PhNHNHC(S)NHP(S)(OiPr) $_2$ (1) and EtN(NH $_2$)C(S)NHP(-S)(OiPr) $_2$ (2). Compound 1 was described by us earlier [11] and in this work we present the X-ray structure investigation of it in comparison with 2.

2. Experimental

2.1. Synthesis

Thiosemicarbazide **1** was synthesized according to the previously described method [9]. Compound **2** was synthesized similarly to **1**: a solution of ethylhydrazine (5 mmol, 0.30 g) in anhydrous CH_2Cl_2 (15 mL) was treated under vigorous stirring with a solution of (iPrO)₂P(S)NCS (5.5 mmol, 1.31 g) in the same solvent. The mixture was stirred for 2 h. The solvent was removed in a vacuum, and the product was purified by recrystallization from a 1:5 (v/v) mixture of methylene chloride and n-hexane.

Compound 1: 1 H NMR (CDCl₃): δ = 1.35–1.40 (m, 12H, CH₃), 4.92 (d. sept, $^{3}J_{POCH}$ = 10.6 Hz, $^{3}J_{H,H}$ = 6.2 Hz, 2H, OCH), 6.34 (s, 1H, PhNH), 6.84–6.92 (m, 2H, o-H, Ph), 6.96–7.05 (m, 1H, p-H, Ph), 7.24–7.32 (m, overlapped with the solvent signal, m-H, Ph), 8.00 (s, 1H, C(S)NHN), 8.23 (d, 1H, $^{2}J_{PNH}$ = 13.9 Hz, P(S)NH), 9.44 (d, $^{4}J_{PNH}$ = 5.6 Hz, C(S)NHN, minor form) ppm. ^{31}P NMR (CDCl₃): δ = 53.5 (br t, $^{3}J_{POCH}$ = 9.8 Hz, 1P), 58.5 (q, $^{2}J_{PNH}$ = $^{3}J_{POCH}$ = 12.2 Hz, 1.9P) ppm. IR: ν = 624 (P=S), 1000, 1010 (POC), 1528 (S=C-N), 3224, 3288 (NH) cm $^{-1}$.

Compound **2**: Yield: 1.27 g (85%). M.p. 97 °C. ¹H NMR (CDCl₃): δ = 1.25 (t, ${}^{3}J_{\text{H,H}}$ = 7.2 Hz, 3H, CH₃, Et), 1.37 (d, ${}^{3}J_{\text{H,H}}$ = 6.2 Hz, 12H, CH₃, OiPr), 3.91 (br s, 2H, NH₂), 4.16 (q, ${}^{3}J_{\text{H,H}}$ = 7.1 Hz, 2H, CH₂, Et), 4.94 (d. sept, ${}^{3}J_{\text{POCH}}$ = ${}^{3}J_{\text{H,H}}$ = 6.2 Hz, 2H, OCH), 8.98 (br s, 1H, P(S)NH) ppm. ${}^{31}\text{P}\{{}^{1}\text{H}\}$ NMR (CDCl₃): δ = 54.1 (1P), 59.3 (3.5P) ppm. IR: ν = 653 (P=S), 981, 998, 1020 (POC), 1488 (S=C-N), 1627, 3106, 3173, 3208, 3247, 3323 (NH + NH₂) cm⁻¹. *Anal.* Calc. for C₉H₂₂N₃O₂PS₂ (299.39): C, 36.11; H, 7.41; N, 14.04. Found: C, 36.18; H, 7.34; N, 14.10%.

^b Institut für Anorganische Chemie J.-W.-Goethe-Universität, Frankfurt/Main, Germany

^{*} Corresponding author. Tel.: +784 32315397; fax: +784 32543734. E-mail address: damir.safin@ksu.ru (D.A. Safin).

2.2. Physical measurements

Infrared spectra (Nujol) were recorded with a Specord M-80 spectrometer in the range 400–3600 cm⁻¹. NMR spectra were obtained on a Varian Unity-300 NMR spectrometer at 25 °C. ¹H and ³¹P NMR spectra were recorded at 299.948 and 121.420 MHz, respectively. Chemical shifts are reported with reference to SiMe₄ (¹H) and H₃PO₄ (³¹P). Elemental analyses were performed on a Perkin–Elmer 2400 CHN microanalyser.

2.3. Crystal structure determination and refinement

The X-ray data were collected on a STOE IPDS-II diffractometer with graphite-monochromatized Mo K α radiation generated by a fine-focus X-ray tube operated at 50 kV and 40 mA. The images were indexed, integrated and scaled using the X-Area data reduction package [12]. Data were corrected for absorption using the PLATON program [13]. The structure was solved by direct methods using the SHELXS-97 program [14] and refined first isotropically and then anisotropically using SHELXL-97 [14]. Hydrogen atoms were revealed from $\Delta \rho$ maps and those bonded to C were refined using a riding model. H atoms bonded to N were freely refined.

3. Results and discussion

Thiosemicarbazide **1** was synthesized according to the previously described method [9]. Compound **2** was synthesized similar to **1** by treatment of ethylhydrazine isothiocyanate $(i\text{PrO})_2\text{P(S)}NCS$ (Scheme 1). Their compositions were successfully proved by microanalysis data. Condensations of isocyanates with arylsubstituted hydrazines are reported to yield 1-substituted semicarbazides [15]. The reaction between monoalkylhydrazines and isocyanates, however, gives 2-substituted alkyl semicarbazides [16] due to the greater nucleophilic character of the secondary amine groups.

There are absorption bands for the NH_2 group in the IR spectrum of **2**. This confirms the isothiocyanate addition to the substituted nitrogen atom of the parent hydrazine. The $^{31}P\{^1H\}$ NMR spectrum of **2** contains two signals at 54.1 and 59.3 ppm. The ratio of the integrated intensities at 25 °C is \sim 1:3.5. When the crystalline material is dissolved in CDCl₃ two lines in the $^{31}P\{^1H\}$ NMR spectrum indicate that the equilibrium reaction shown in Scheme 2 is slow on the NMR timescale. We suppose that in a solution of **2** both

$$R = Ph$$

$$R$$

Scheme 1. Preparation of 1 and 2.

$$\begin{array}{c} H \\ H \\ N - H \\ EtN \\ S \\ Z \text{-isomer} \end{array} \qquad \begin{array}{c} H - OiPr \\ P(S)(OiPr) \\ EtN \\ S \\ EtN \\ S \\ E \text{-isomer} \end{array}$$

Scheme 2.

Table 1
Crystal data, data collection and refinement details for 1 and 2.

	1	2
Empirical formula	$C_{13}H_{22}N_3O_2PS_2$	$C_9H_{22}N_3O_2PS_2$
Formula weight	347.43	299.39
Temperature (K)	173(2)	173(2)
Radiation Mo Kα (Å)	0.71073	0.71073
Crystal system	triclinic	monoclinic
Space group	ΡĪ	C2/c
a (Å)	6.1221(6)	22.7946(16)
b (Å)	8.0835(8)	10.1656(5)
c (Å)	17.8130(18)	14.7330(10)
α (°)	99.261(8)	90
β (°)	91.141(8)	113.301(5)
γ (°)	94.760(8)	90
$V(Å^3)$	866.54(15)	3135.5(3)
Z	2	8
$D_{\rm calc}$ (Mg m ⁻³)	1.332	1.268
Absorption correction, μ (cm ⁻¹)	4.06	4.38
F(000)	368	1280
Crystal size (mm³)	$0.34\times0.19\times0.09$	$0.27\times0.26\times0.24$
Recording range, θ_{max} ($^{\circ}$)	3.34-25.65	2.46-25.93
Number of recorded reflections	10372	17948
Number of recorded independent reflections $[R_{int}]$	3246 [0.0476]	3049 [0.0377]
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0308$,	$R_1 = 0.0261$,
	$wR_2 = 0.0779$	$wR_2 = 0.0682$
R indices (all data)	$R_1 = 0.0373$,	$R_1 = 0.0284$,
	$wR_2 = 0.0802$	$wR_2 = 0.0694$
S	1.015	1.026

Table 2 Selected bond lengths (Å), and bond and torsion angles ($^{\circ}$) for **1**.

Bond lengths P(1)-O(1) P(1)-O(2) P(1)-N(1) P(1)-S(2)	1.5844(12) 1.5805(12) 1.6917(15) 1.9249(6)	S(1)-C(1) N(1)-C(1) N(2)-C(1) N(2)-N(3)	1.6848(16) 1.369(2) 1.346(2) 1.401(2)
Bond angles O(2)-P(1)-O(1) O(2)-P(1)-N(1) O(1)-P(1)-N(1) O(2)-P(1)-S(2) O(1)-P(1)-S(2) N(1)-P(1)-S(2)	103.80(6) 106.39(7) 94.32(7) 116.17(5) 116.67(5) 116.65(6)	C(1)-N(1)-P(1) C(1)-N(2)-N(3) N(2)-C(1)-N(1) N(2)-C(1)-S(1) N(1)-C(1)-S(1)	126.79(12) 120.84(14) 115.04(14) 120.35(12) 124.58(13)
Torsion angles O(2)-P(1)-N(1)-C(1) O(1)-P(1)-N(1)-C(1) S(2)-P(1)-N(1)-C(1) N(3)-N(2)-C(1)-N(1)	71.73(15) 177.49(14) -59.71(15) -3.3(2)	N(3)-N(2)-C(1)-S(1) P(1)-N(1)-C(1)-N(2) P(1)-N(1)-C(1)-S(1)	178.56(12) 163.61(12) -18.3(2)

Table 3 Selected bond lengths (Å), and bond and torsion angles ($^{\circ}$) for **2**.

Bond lengths			
P(1)-O(1)	1.5754(9)	S(2)-C(1)	1.6750(14)
P(1)-O(2)	1.5772(10)	N(1)-C(1)	1.3694(18)
P(1)-N(1)	1.6716(11)	N(2)-C(1)	1.3512(17)
P(1)-S(1)	1.9329(5)	N(2)-N(3)	1.4187(17)
Bond angles			
O(1)-P(1)-O(2)	105.29(5)	C(1)-N(1)-P(1)	127.86(10)
O(1)-P(1)-N(1)	105.55(6)	C(1)-N(2)-N(3)	117.29(11)
O(2)-P(1)-N(1)	93.85(6)	N(2)-C(1)-N(1)	113.88(12)
O(1)-P(1)-S(1)	115.52(4)	N(2)-C(1)-S(2)	123.83(10)
O(2)-P(1)-S(1)	115.79(4)	N(1)-C(1)-S(2)	122.29(10)
N(1)-P(1)-S(1)	118.08(5)		
Torsion angles			
O(1)-P(1)-N(1)-C(1)	68.99(13)	N(3)-N(2)-C(1)-S(2)	174.79(10)
O(2)-P(1)-N(1)-C(1)	-176.03(12)	P(1)-N(1)-C(1)-N(2)	-172.63(10)
S(1)-P(1)-N(1)-C(1)	61.95(13)	P(1)-N(1)-C(1)-S(2)	7.31(18)
N(3)-N(2)-C(1)-N(1)	-5.27(18)		

Download English Version:

https://daneshyari.com/en/article/1335096

Download Persian Version:

https://daneshyari.com/article/1335096

<u>Daneshyari.com</u>