

Contents lists available at ScienceDirect

Polyhedron

Approaches to wired terpyridine: Bithienyl alkynyl derivatives of 2,2':6',2"-terpyridine and their ruthenium(II) complexes

Edwin C. Constable*, Egbert Figgemeier, Catherine E. Housecroft *, Elaine A. Medlycott, Markus Neuburger, Silvia Schaffner, Sébastien Reymann

Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland

ARTICLE INFO

Article history: Received 18 July 2008 Accepted 8 September 2008 Available online 9 October 2008

Keywords: Alkyne 2,2':6',2"-Terpyridine Heterocyclic Coordination Ruthenium Thienyl

ABSTRACT

Two approaches to the formation of ruthenium(II) complexes containing ligands with conjugated 2,2':6',2''-terpyridine (tpy), alkynyl and bithienyl units have been investigated. Bromination of 4'-(2,2'-bithien-5'-yl)-2,2':6',2''-terpyridine leads to 4'-(5-bromo-2,2'-bithien-5'-yl)-2,2':6',2''-terpyridine (1), the single crystal structure of which has been determined. The complexes $[Ru(1)_2][PF_6]_2$ and $[Ru(tpy)(1)][PF_6]_2$ have been prepared and characterized. Sonogashira coupling of the bromo-substituent with (TIPS)C=CH did not prove to be an efficient method of preparing the corresponding complexes with pendant alkynyl units. The reaction of 4'-ethynyl-2,2':6',2''-terpyridine with 5-bromo-2,2'-bithiophene under Sonogashira conditions yielded ligand 2, and the heteroleptic ruthenium(II) complex $[Ru(2)-(tpy)][PF_6]_2$ has been prepared and characterized.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

A recurrent theme in metallosupramolecular chemistry is the incorporation of redox active and photoactive species into photonic devices, with the hope of achieving applications in, for example, solar energy conversion [1], biomolecule sensing [2,3] and dye-sensitized solar cells [4,5]. The $\{M(tpy)_2\}^{n+}$ unit provides a structurally rigid building block, functionalization of which is readily achieved, allowing this unit to be central to the development of a range of supramolecular architectures [6-9]. We and others have demonstrated that the conjugation of thienyl units to $\{M(tpy)\}^{n+}$ domains has beneficial consequences for the photophysical properties [10-17]. We are currently seeking ways of enhancing the photophysical properties [18] of {Ru(tpy)₂}²⁺-based systems, by functionalizing the tpy ligand in the 4'-position with thienyl and alkynyl substituents which are covalently linked to each other. Ultimately, these units will serve as spacers between the tpy domain and a pendant functionality and should enhance electronic communication between the latter components of the assembly [13,16,19-26]. There have been only a few reports of tpy ligands carrying conjugated thienyl and alkynyl [27–34], and in this paper, we describe our initial synthetic approaches to coupling tpy, bithienyl and alkynyl units and the formation of ruthenium(II) complexes of ligands 1 and 2 (Scheme 1).

2. Experimental

2.1. General

 1 H and 13 C NMR spectra were recorded on Bruker Avance DRX-500 or DPX-400 spectrometers; the ring labelling and numbering schemes adopted for the ligands and heteroleptic complexes are shown in Schemes 1 and 2. Chemical shifts for 1 H and 13 C NMR spectra are referenced to residual solvent peaks with respect to TMS = δ 0 ppm. Electron impact, FAB and electrospray ionisation mass spectra were recorded using Finnigan MAT 95, MAT 8400 and MAT LCQ mass spectrometers, respectively. Reactions were carried out under argon.

 $[Ru(tpy)Cl_3]$ [35] and 4'-ethynyl-2,2':6',2"-terpyridine [36] were prepared as previously reported. (TIPS = triisopropylsilyl).

2.2. 5-Bromo-2,2'-bithiophene

5-Bromo-2,2'-bithiophene was prepared by NBS bromination of 2,2'-bithiophene, as reported by Wu et al. [37]. Optimum yields were obtained by using neat acetic acid as solvent rather than the acetic acid and chloroform as previously reported. ¹H NMR spectroscopic data were in agreement with those reported [37] although the spectra were consistent with the presence of 5,5'-dibromo-2,2'-bithiophene [38] as an impurity which was difficult to separate.

^{*} Corresponding authors. Fax: +41 61 267 1018 (C.E. Housecroft). E-mail address: catherine.housecroft@unibas.ch (C.E. Housecroft).

Br
$$4 \stackrel{5}{D} \stackrel{5}{S}$$
 $3 \stackrel{5}{S} \stackrel{6}{C} \stackrel{4}{A} \stackrel{7}{3} \stackrel{8}{B} \stackrel{N}{N} \stackrel{N}{N} \stackrel{6}{A} \stackrel{A}{3} \stackrel{A}{3} \stackrel{1}{2} \stackrel{N}{N} \stackrel{N} N \stackrel{N}{N} \stackrel{N}{N} \stackrel{N}{N} \stackrel{N}{N} \stackrel{N}{N} \stackrel{N}{N} \stackrel{N}{N} \stackrel{N}$

Scheme 1. Structures of ligands **1** and **2**, and numbering scheme used for the NMR spectroscopic assignments.

Scheme 2. Ring labelling for the NMR spectroscopic assignments in $[Ru(tpy)(1)]^{2^*}$. The same scheme is used in $[Ru(tpy)(2)]^{2^*}$.

2.3. 4'-(5-Bromo-2,2'-bithien-5'-yl)-2,2':6',2"-terpyridine (1)

4'-(2,2'-Bithien-5'-yl)-2,2':6',2"-terpyridine (0.31 g,[39] 0.81 mmol) was dissolved in a mixture of glacial acetic acid (5 cm³) and N-bromosuccinimide (0.17 g, 0.97 mmol) and stirred at room temperature overnight in the absence of light. The reaction mixture was neutralised with aqueous NaHCO3 and the solution was extracted into CH_2Cl_2 (3 × 25 cm³). The CH_2Cl_2 extracts were dried over Na2SO4 and the solvent was removed. Compound 1 was isolated as a yellow solid (0.26 g, 0.55 mmol, 68%). m.p. = 185.6 °C. ¹H NMR (500 MHz, CDCl₃) δ /ppm 8.72 (ddd, J 4.8, 1.8, 0.9 Hz, 2H, H^{A6}), 8.64 (s, 2H, H^{3B}), 8.63 (dt, J 7.5, 1.0 Hz, 2H, H_{A}^{A3}), 7.86 (dt, J 7.7, 1.8 Hz, 2H, H_{A}^{A4}), 7.68 (d, J 3.9 Hz, 1H, H_{A}^{C4}), 7.35 (ddd, J 7.5, 4.8, 1.2 Hz, 2H, H_{A}^{A5}), 7.15 (d, J 3.9 Hz, 1H, H_{A}^{C3}), 7.00 (s, 2H, H_{A}^{D3+D4}). H_{A}^{D3+D4} 0 NMR (125 MHz, CDCl₃) δ/ppm 156.2 (C^{B2}) , 156.0 (C^{A2}) , 149.3 (C^{A6}) , 143.0 (C^{B4}) , 140.9 (C^{C5}) , 138.7 (C^{D2}) , 138.2 (C^{C2}) , 137.2 (C^{A4}) , 131.0 (C^{D4}) , 126.9 (C^{C4}) , 125.1 (C^{C3}) , 124.5 (C^{D3}) , 124.2 (C^{A5}) , 121.6 (C^{A3}) , 116.9 (C^{B3}) , 111.9 (C^{C5}). EI MS m/z 476 [M]⁺. C₂₃H₁₄BrN₃S₂ · 1.5H₂O requires C, 54.87; H, 3.40; N, 8.35. Found: C, 54.26; H, 2.83; N, 8.25%.

2.4. [Ru(tpy)(1)][PF₆]₂

 $[Ru(tpy)Cl_3]$ (0.12 g, 0.27 mmol) was added to a stirring solution of compound 1 (0.13 g, 0.25 mmol) in EtOH (20 cm³) with a few drops of *N*-ethylmorpholine. The mixture was stirred at room

temperature for 15 min, and then heated at reflux for 5 h in the absence of light. The mixture was cooled to room temperature, and was added to aqueous NH₄PF₆ and the solution diluted with water (100 cm³). The resulting precipitate was collected and dissolved in MeCN and purified by column chromatography (SiO₂, MeCN:H₂O:aqueous KNO₃ 9:0.9:0.1). The second (red) band was collected, excess aqueous NH₄PF₆ was added and solvent was removed. The solid was dissolved in acetonitrile, and the product precipitated by addition to water. Recrystallization from MeCN/ Et_2O gave $[Ru(tpy)(1)][PF_6]_2$ as a red solid (40 mg, 0.036 mmol, 13%). ¹H NMR (500 MHz, CD₃CN) δ /ppm 8.88 (s, 2H, H^{B3}), 8.75 (d, J 8.2 Hz, 2H, H^{F3}), 8.64 (d, J 8.1 Hz, 2H, H^{A3}), 8.49 (d, J 8.0 Hz, 2H, H^{E3}), 8.41 (t, J 8.2 Hz, 1H, H^{F4}), 8.11 (d, J 3.9 Hz, 1H, H^{C4}), 7.95 (dt, J 7.8, 1.3 Hz, 2H, H^{A4}), 7.92 (dt, J 7.9, 1.4 Hz, 2H, H^{E4}), 7.51 (d, J 3.9 Hz, 1H, H^{C3}), 7.43 (d, J 5.5 Hz, 2H, H^{A6}), 7.34 (d, J 5.6 Hz, 2H, H^{E6}), 7.29 (d, *J* 3.9 Hz, 1H, H^{D3/D4}), 7.22 (d, *J* 3.9 Hz, 1H, H^{D3/D4}), 7.17 (m, 4H, H^{A5+E5}). 13 C{ 1 H} NMR (125 MHz, CD₃CN) $^{\delta}$ /ppm 159.1 (C^{A2/E2}), 158.9 (C^{A2/E2}), 156.5 (C^{B2/F2}), 156.6 (C^{B2/F2}), 156.6 $(C^{A6/E6})$, 153.5 $(C^{A6/E6})$, 141.7 (C^{B4}) , 140.6 $(C^{C2/D2})$, 139.8 (C^{C5}) , 139.2 $(C^{A4/E4})$, 139.1 $(C^{A4/E4})$, 138.8 $(C^{C2/D2})$, 136.9 (C^{F4}) , 132.9 (C^{D4}) , 130.4 (C^{C4}) , 128.6 $(C^{A5/E5})$, 128.5 $(C^{A5/E5})$, 127.2 (C^{C3}) , 126.8 (C^{D3}) , 125.7 $(C^{A3/E3})$, 125.5 $(C^{A3/E3})$, 124.8 (C^{F3}) , 120.3 (C^{B3}) , 113.2 (C^{D5}) . ESI MS m/z 957 $[M-PF_6]^+$, 405 $[M-2PF_6]^{2^+}$. C₃₈H₂₅Br₁F₁₂N₆P₂Ru₁S₂·H₂O requires C, 40.80; H, 2.43; N, 7.51. Found: C, 41.10; H, 2.77; N, 7.18%.

2.5. $[Ru(1)_2][PF_6]_2$

RuCl₃ · 3H₂O (31 mg, 0.12 mmol), 1 (110 mg, 0.23 mmol) and AgNO₃ (0.06 g, 0.35 mmol) were added to DMF (15 cm³). The solution was stirred at room temperature for 15 min, after which time it was heated at reflux for 8 h in the absence of light. The reaction mixture was filtered to remove AgCl, and then saturated aqueous NH₄PF₆ (excess) was added to the filtrate to precipitate the product which was purified by column chromatography (SiO2, MeCN:aqueous KNO₃, 15:1). The main red fraction was collected and saturated aqueous NH₄PF₆ was added to effect nitrate/hexafluorophosphate exchange. Solvent was removed, the solid residue dissolved in MeCN, and the product precipitated by addition of water. [Ru(1)₂][PF₆]₂ was recrystallized from MeCN/Et₂O and was isolated as an orange-red solid (80 mg, 0.060 mmol, 52%). ¹H NMR (400 MHz, CD₃CN) δ /ppm 8.89 (s, 4H, H^{B3}), 8.64 (d, *J* 8.0 Hz, 4H, H^{A3}), 8.11 (d, / 4.0 Hz, 2H, H^{C4}), 7.95 (dt, / 7.9, 1.5 Hz, 4H, H^{A4}), 7.51 (d, / 3.9 Hz, 2H, H^{C3}), 7.43 (d, / 4.8 Hz, 4H, H^{A6}), 7.29 (d, / 3.9 Hz, 2H, $H^{D3/D4}$), 7.23 (d, J 3.9 Hz, 2H, $H^{D3/D4}$), 7.18 (m, 4H, H^{A5}). ESI MS m/z 1198 $[M-PF_6]^+$.

2.6. Ligand **2**

4'-Ethynyl-2,2':6',2"-terpyridine (100 mg, 0.388 mmol), 5-bromo-2,2'-bithiophene (100 mg, 0.408 mmol), $[Pd(PPh_3)_2Cl_2]$ (14 mg, 0.020 mmol) and CuI (4 mg, 0.021 mmol) were dissolved in Et₃N (8 cm³). The solution was heated under reflux for 48 h. The solvent was then evaporated under reduced pressure. The crude material was dissolved in hexane (200 cm³). After filtration, solvent from the filtrate was removed under reduced pressure. The crude product was purified by several, sequential column chromatographic separations (see text) (Al₂O₃, hexane:ethyl acetate 1:1), and the third band was collected. Compound 2 was isolated as a yellow solid (45 mg, 0.11 mmol, 28%). M.p. = 152.4 °C. 1 H NMR (500 MHz, CD₃CN) δ /ppm 8.70 (d, J 4.6 Hz, 2H, H^{A6}), 8.60 (d, J 7.9 Hz, 2H, H^{A3}), 8.53 (s, 2H, H^{B3}), 7.85 (dt, J 7.8, 1.7 Hz, 2H, H^{A4}), 7.33 (dd, J 7.2, 4.8, 0.7 Hz, 2H, H^{A5}), 7.25 (dd, J 5.0, 1.0 Hz, 1H, H^{D3}), 7.24 (d, J 3.9 Hz, 1H, H^{C4}), 7.21 (d, J 3.7 Hz, 1H, H^{D5}), 7.08 (d, J 3.8 Hz, 1H, H^{C3}), 7.02 (dd, J 3.8, 5.0 Hz, 1H, H^{D4}). ¹³C{¹H} NMR (125 MHz, CD₃CN) δ /ppm 155.8 (C^{A2/B2}), 155.7 (C^{A2/}

Download English Version:

https://daneshyari.com/en/article/1335252

Download Persian Version:

https://daneshyari.com/article/1335252

<u>Daneshyari.com</u>