Polyhedron 72 (2014) 8-18

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

A series of divalent metal complexes with mixed 5-(imidazol-1-ylmethyl)isophthalic acid and N-donor ligands: Synthesis, characterization and property

Hai-Wei Kuai^a, Taka-aki Okamura^b, Wei-Yin Sun^{a,*}

 ^a Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China
 ^b Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

ARTICLE INFO

Article history: Received 30 November 2013 Accepted 18 January 2014 Available online 29 January 2014

Keywords: Copper(II) Manganese(II) Nickel(II) Zinc(II) Luminescence Magnetic property

ABSTRACT

Eight complexes with different 3d metal centers and auxiliary ligands, [Cu(L)(py)](1), $[Cu(L)(bpy)]\cdot 1.5H_2$ -O (2), [Mn(L)] (3), $[Mn(L)(pybim)]\cdot 3H_2O$ (4), $[Ni(L)(bpy)]\cdot 2H_2O$ (5), $[Ni(L)(phen)]\cdot 2H_2O$ (6), $[Ni(L)(bpe)]\cdot 2H_2O$ (7) and $[Zn(L)(bpy)]\cdot 2H_2O$ (8) $[H_2L = 5-(imidazol-1-ylmethyl)isophthalic acid, py = pyridine, bpy = 2,2'-bipyridine, pybim = 2-(pyridin-2-yl)-1H-benzo[d]imidazole, phen = 1,10-phenanthroline, bpe = 1,2-di(pyridin-4-yl)ethylene] were obtained under hydrothermal conditions and characterized by single crystal and powder X-ray diffractions, IR, elemental and thermogravimetric analyses. Complex 1 is a 3-connected uninodal 2D network with (4.8²) topology, while 2, 4, 6 and 7 display 3-connected uninodal 2D network with (4.8²) topology, so metal centers and auxiliary ligands on the structures of resultant complexes is discussed. Magnetic property of 3 and luminescence of 8 were investigated.$

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The assembling strategies of coordination architectures involve the deliberate design of organic building blocks and the adept employment of metal centers [1]. Hitherto, a lot of researches have been carried out to manage influential factors, including the coordination geometry of metal center, the intrinsic nature of organic ligand, and other experimental conditions such as acidic or basic media for the reaction system, reaction solvent, and temperature as well as the ratio of metal-to-ligand, to construct coordination supramolecular compounds for their fascinating structures and potential applications in gas storage, chemical sensors, ion exchange, microelectronics, magnetism, nonlinear optics, and heterogeneous catalysis etc. [2–5]. Among the above mentioned influential factors, the nature of organic ligand has been documented as crucial roles in the formation of coordination supramolecular compounds [6]. Therefore, the design of organic ligands is undoubtedly decisive in assembly of complexes. Among the well employed organic ligands, N- and/or O-donor multidentate ligands, such as isonicotinic acid, 4-(pyridin-4-yl)benzoic acid, and imidazole-4, 5-dicarboxylic acid, are always regarded as excellent building blocks for construction of desirable frameworks and have been well employed in coordination chemistry due to their fine coordinating capacities and variable coordination modes [7].

In our previous studies, we ever used a series of imidazole-containing ligands, for example 1,3,5-tris(imidazol-1-yl)benzene and 1,3,5-tris(imidazol-1-ylmethyl)benzene, and mixed N- and O-donor containing ligands like 4-(imidazol-1-yl)benzoic acid and 3, 5-di(imidazol-1-yl)benzoic acid to construct coordination supramolecular compounds [8]. Based on the previous studies, we have been recently focusing our attention on the utilization of the semi-rigid ligand 5-(imidazol-1-ylmethyl)isophthalic acid (H₂L) as organic building blocks to react with varied metal salts under appropriate synthetic conditions. The H₂L ligand possesses two carboxylate groups and one flexible imidazol-1-ylmethyl arm which can rotate freely. Hence, it could potentially adopt different conformation in assembly reaction via the adjustment of external experimental conditions. The H₂L ligand can form series cadmium(II) and zinc(II) complexes with alkaline reagent dependent structural diversity; moreover, five cobalt(II) polymers from the H₂L ligand were assembled and their structural diversity was achieved by the presence of auxiliary ligands and the alteration of metal-to-ligand ratio [9]. Based on the consideration of fact that functional properties of complexes are largely dependent on their architectures, more experimental conditions, including trying

^{*} Corresponding author. Tel.: +86 25 83593485; fax: +86 25 83314502. *E-mail address:* sunwy@nju.edu.cn (W.-Y. Sun).

more types of auxiliary ligands and metal salts, were tried to further pursue structural diversity of complexes for the exploration of new crystalline materials.

In this paper, we report the preparation and structural characterization of a series of divalent 3d metal complexes: [Cu(L)(py)](1), $[Cu(L)(bpy)]\cdot 1.5H_2O$ (**2**), [Mn(L)] (**3**), $[Mn(L)(pybim)]\cdot 3H_2O$ (**4**), $[Ni(L)(bpy)]\cdot 2H_2O$ (**5**), $[Ni(L)(phen)]\cdot 2H_2O$ (**6**), $[Ni(L)(bpe)(H_2O)]\cdot 2H_2O$ (**7**) and $[Zn(L)(bpy)]\cdot 2H_2O$ (**8**) $[H_2L = 5-(imidazol-1-ylmethyl)isophthalic acid, py = pyridine, bpy = 2,2'-bipyridine, py-bim = 2-(pyridin-2-yl)-1H-benzo[d]imidazole, phen = 1,10-phenanthroline, bpe = 1,2-di(pyridin-4-yl)ethylene]. The influential factors of synthetic strategies on structures will be discussed. In addition, magnetic property of$ **3**and luminescence of**8**were examined.

2. Experimental

2.1. Materials and measurements

All commercially available chemicals and solvents are of reagent grade and were used as received without further purification. The ligand H_2L was prepared according to the previously reported method [9]. Elemental analyses of C, H, and N were taken

Table 1

Crystal data and structure refinements for complexes 1-8

on a Perkin-Elmer 240C elemental analyzer. Infrared spectra (IR) were recorded on a Bruker Vector22 FT-IR spectrophotometer by using KBr pellets. Thermogravimetric analyses (TGA) were performed on a simultaneous SDT 2960 thermal analyzer under nitrogen atmosphere with a heating rate of 10 °C min⁻¹. Powder X-ray diffraction (PXRD) patterns were measured on a Shimadzu XRD-6000 X-ray diffractometer with Cu K α (λ = 1.5418 Å) radiation at room temperature. The magnetic measurement in the temperature range of 1.8–300 K was carried out on a Quantum Design MPMS7 SOUID magnetometer in a field of 2000 Oe. Diamagnetic corrections were made with Pascal's constants. The luminescence spectra for the powdered solid samples were measured on an Aminco Bowman Series 2 spectrofluorometer with a xenon arc lamp as the light source. In the measurements of emission and excitation spectra the pass width is 5 nm. and all the measurements were carried out under the same experimental conditions.

2.2. Preparation of [Cu(L)(py)] (1)

Reaction mixture of $Cu(NO_3)_2 \cdot 3H_2O$ (24.1 mg, 0.1 mmol), H_2L (24.6 mg, 0.1 mmol) and 1 mL pyridine in 10 mL H_2O was sealed

Compound	1	2	3	4
Empirical formula	C ₁₇ H ₁₃ N ₃ O ₄ Cu	C44H38N8O11Cu2	$C_{12}H_8N_2O_4Mn$	C24H23N5O7Mn
Formula weight	386.84	981.90	299.14	548.41
Crystal system	orthorhombic	triclinic	monoclinic	triclinic
Space group	Pbca	ΡĪ	$P2_1/c$	ΡĪ
a (Å)	17.406(4)	9.5885(6)	8.8274(12)	8.753(8)
b (Å)	8.758(2)	9.8352(6)	16.682(2)	10.165(10)
c (Å)	20.774(7)	13.9055(9)	7.8691(11)	14.819(14)
α (°)	90.00	71.4010(10)	90.00	96.430(15)
β (°)	90.00	80.9910(10)	100.689(3)	91.546(15)
γ (°)	90.00	66.1990(10)	90.00	110.753(14)
T (K)	200	293(2)	293(2)	293(2)
V (Å ³)	3166.9(16)	1136.58(12)	1138.7(3)	1222(2)
Ζ	8	1	4	2
$D_{\text{calc}} (\text{g cm}^{-3})$	1.623	1.435	1.745	1.490
$\mu (\mathrm{mm}^{-1})$	1.408	1.003	1.171	0.595
F(000)	1576	504	604	566
θ Range (°)	3.05-27.49	1.55-26.00	2.35-27.00	1.39-28.00
Reflections collected	25700	6242	6508	8609
Unique reflections	3623	4373	2472	5845
Goodness-of-fit (GOF) on F^2	1.092	1.074	1.367	1.053
R_1^{a} , w R_2^{b} [I > 2 σ (I)]	0.0416, 0.1076	0.0565, 0.1631	0.0995, 0.1815	0.0505, 0.1207
R_1 , w R_2 (all data)	0.0538, 0.1134	0.0631, 0.1692	0.1022, 0.1825	0.0694, 0.1304
Compound	5	6	7	8
Empirical formula	$C_{22}H_{20}N_4O_6Ni$	$C_{24}H_{20}N_4O_6Ni$	C ₂₄ H ₂₄ N ₄ O ₇ Ni	$C_{22}H_{20}N_4O_6Zn$
	405 12	519.15	539.18	501.79
Formula weight	495.13			
Formula weight Crystal system	triclinic	triclinic	monoclinic	triclinic
Formula weight Crystal system Space group	495.13 triclinic PĪ	triclinic PĪ	monoclinic P2 ₁ /c	triclinic PĪ
Formula weight Crystal system Space group a (Å)	495.13 triclinic PĪ 9.5783(7)	triclinic <i>P</i> 1 10.448(4)	monoclinic $P2_1/c$ 9.9659(19)	triclinic P1 9.4978(6)
Formula weight Crystal system Space group a (Å) b (Å)	495.13 triclinic P1 9.5783(7) 10.1593(7)	triclinic P1 10.448(4) 14.664(4)	monoclinic P2 ₁ /c 9.9659(19) 28.894(6)	triclinic P1 9.4978(6) 10.2376(7)
Formula weight Crystal system Space group <i>a</i> (Å) <i>b</i> (Å) <i>c</i> (Å)	495.13 triclinic PĪ 9.5783(7) 10.1593(7) 13.0962(14)	triclinic P1 10.448(4) 14.664(4) 15.179(4)	monoclinic P2 ₁ /c 9.9659(19) 28.894(6) 10.6565(14)	triclinic <i>P</i> 1 9.4978(6) 10.2376(7) 13.3159(13)
Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°)	495.13 triclinic PĪ 9.5783(7) 10.1593(7) 13.0962(14) 97.7380(10)	triclinic <i>P</i> 1 10.448(4) 14.664(4) 15.179(4) 79.215(10)	monoclinic P2 ₁ /c 9.9659(19) 28.894(6) 10.6565(14) 90.00	triclinic <i>P</i> 1 9.4978(6) 10.2376(7) 13.3159(13) 100.4420(10)
Formula weight Crystal system Space group a (Å) b (Å) c (Å) a (°) β (°)	495.13 triclinic PĪ 9.5783(7) 10.1593(7) 13.0962(14) 97.7380(10) 100.3690(10)	triclinic P1 10.448(4) 14.664(4) 15.179(4) 79.215(10) 78.396(13)	monoclinic $P2_1/c$ 9.9659(19) 28.894(6) 10.6565(14) 90.00 122.320(12)	triclinic <i>P</i> Ī 9.4978(6) 10.2376(7) 13.3159(13) 100.4420(10) 98.5720(10)
Formula weight Crystal system Space group $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ $\alpha(^{\circ})$ $\beta(^{\circ})$ $\gamma(^{\circ})$	495.13 triclinic PI 9.5783(7) 10.1593(7) 13.0962(14) 97.7380(10) 100.3690(10) 116.8360(10)	triclinic P1 10.448(4) 14.664(4) 15.179(4) 79.215(10) 78.396(13) 85.013(11)	monoclinic P2 ₁ /c 9.9659(19) 28.894(6) 10.6565(14) 90.00 122.320(12) 90.00	triclinic $P\bar{1}$ 9.4978(6) 10.2376(7) 13.3159(13) 100.4420(10) 98.5720(10) 115.7140(10)
Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) T (K)	495.13 triclinic <i>P</i> 1 9.5783(7) 10.1593(7) 13.0962(14) 97.7380(10) 100.3690(10) 116.8360(10) 293(2)	triclinic P1 10.448(4) 14.664(4) 15.179(4) 79.215(10) 78.396(13) 85.013(11) 200	monoclinic P2 ₁ /c 9.9659(19) 28.894(6) 10.6565(14) 90.00 122.320(12) 90.00 293(2)	triclinic $P\bar{1}$ 9.4978(6) 10.2376(7) 13.3159(13) 100.4420(10) 98.5720(10) 115.7140(10) 293(2)
Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) T (K) V (Å ³)	495.13 triclinic <i>P</i> 1 9.5783(7) 10.1593(7) 13.0962(14) 97.7380(10) 100.3690(10) 116.8360(10) 293(2) 1084.19(16)	triclinic P1 10.448(4) 14.664(4) 15.179(4) 79.215(10) 78.396(13) 85.013(11) 200 2234.9(11)	monoclinic P2 ₁ /c 9.9659(19) 28.894(6) 10.6565(14) 90.00 122.320(12) 90.00 293(2) 2593.2(9)	triclinic $P\bar{1}$ 9.4978(6) 10.2376(7) 13.3159(13) 100.4420(10) 98.5720(10) 115.7140(10) 293(2) 1108.70(15)
Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) T (K) V (Å ³) Z	495.13 triclinic PĪ 9.5783(7) 10.1593(7) 13.0962(14) 97.7380(10) 100.3690(10) 116.8360(10) 293(2) 1084.19(16) 2	triclinic $P\bar{1}$ 10.448(4) 14.664(4) 15.179(4) 79.215(10) 78.396(13) 85.013(11) 200 2234.9(11) 4	monoclinic P2 ₁ /c 9.9659(19) 28.894(6) 10.6565(14) 90.00 122.320(12) 90.00 293(2) 2593.2(9) 4	triclinic $P\bar{1}$ 9.4978(6) 10.2376(7) 13.3159(13) 100.4420(10) 98.5720(10) 115.7140(10) 293(2) 1108.70(15) 2
Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) T (K) V (Å3) Z D_{calc} (g cm ⁻³)	495.13 triclinic PĪ 9.5783(7) 10.1593(7) 13.0962(14) 97.7380(10) 100.3690(10) 116.8360(10) 293(2) 1084.19(16) 2 1.517	triclinic $P\bar{1}$ 10.448(4) 14.664(4) 15.179(4) 79.215(10) 78.396(13) 85.013(11) 200 2234.9(11) 4 1.543	monoclinic $P2_1/c$ 9.9659(19) 28.894(6) 10.6565(14) 90.00 122.320(12) 90.00 293(2) 2593.2(9) 4 1.381	triclinic $P\bar{1}$ 9.4978(6) 10.2376(7) 13.3159(13) 100.4420(10) 98.5720(10) 115.7140(10) 293(2) 1108.70(15) 2 1.503
Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) T (K) V (Å3) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹)	495.13 triclinic $P\bar{1}$ $9.5783(7)$ $10.1593(7)$ $13.0962(14)$ $97.7380(10)$ $100.3690(10)$ $116.8360(10)$ $293(2)$ $1084.19(16)$ 2 1.517 0.942	triclinic $P\bar{1}$ 10.448(4) 14.664(4) 15.179(4) 79.215(10) 78.396(13) 85.013(11) 200 2234.9(11) 4 1.543 0.919	monoclinic $P2_1/c$ 9.9659(19) 28.894(6) 10.6565(14) 90.00 122.320(12) 90.00 293(2) 2593.2(9) 4 1.381 0.797	triclinic <i>P</i> Ī 9.4978(6) 10.2376(7) 13.3159(13) 100.4420(10) 98.5720(10) 115.7140(10) 293(2) 1108.70(15) 2 1.503 1.154
Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) T (K) V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) F(000)	495.13 triclinic <i>P</i> 1 9.5783(7) 10.1593(7) 13.0962(14) 97.7380(10) 100.3690(10) 116.8360(10) 293(2) 1084.19(16) 2 1.517 0.942 512	triclinic $P\bar{1}$ 10.448(4) 14.664(4) 15.179(4) 79.215(10) 78.396(13) 85.013(11) 200 2234.9(11) 4 1.543 0.919 1072	monoclinic $P2_1/c$ 9.9659(19) 28.894(6) 10.6565(14) 90.00 122.320(12) 90.00 293(2) 2593.2(9) 4 1.381 0.797 1120	triclinic $P\bar{1}$ 9.4978(6) 10.2376(7) 13.3159(13) 100.4420(10) 98.5720(10) 115.7140(10) 293(2) 1108.70(15) 2 1.503 1.154 516
Formula weight Crystal system Space group a (Å) b (Å) c (Å) a (°) β (°) γ (°) T (K) V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) F(000) θ Range (°)	495.13 triclinic <i>P</i> 1 9.5783(7) 10.1593(7) 13.0962(14) 97.7380(10) 100.3690(10) 116.8360(10) 293(2) 1084.19(16) 2 1.517 0.942 512 1.63-25.99	triclinic $P\bar{1}$ 10.448(4) 14.664(4) 15.179(4) 79.215(10) 78.396(13) 85.013(11) 200 2234.9(11) 4 1.543 0.919 1072 3.06–27.48	monoclinic P2 ₁ /c 9.9659(19) 28.894(6) 10.6565(14) 90.00 122.320(12) 90.00 293(2) 2593.2(9) 4 1.381 0.797 1120 2.37-28.00	triclinic $P\bar{1}$ 9.4978(6) 10.2376(7) 13.3159(13) 100.4420(10) 98.5720(10) 115.7140(10) 293(2) 1108.70(15) 2 1.503 1.154 516 1.61-26.00
Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) T (K) V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) F(000) θ Range (°) Reflections collected	495.13 triclinic <i>P</i> 1 9.5783(7) 10.1593(7) 13.0962(14) 97.7380(10) 100.3690(10) 116.8360(10) 293(2) 1084.19(16) 2 1.517 0.942 512 1.63-25.99 6015	triclinic $P\bar{1}$ 10.448(4) 14.664(4) 15.179(4) 79.215(10) 78.396(13) 85.013(11) 200 2234.9(11) 4 1.543 0.919 1072 3.06–27.48 21127	monoclinic $P2_1/c$ 9.9659(19) 28.894(6) 10.6565(14) 90.00 122.320(12) 90.00 293(2) 2593.2(9) 4 1.381 0.797 1120 2.37-28.00 16051	triclinic $P\bar{1}$ 9.4978(6) 10.2376(7) 13.3159(13) 100.4420(10) 98.5720(10) 115.7140(10) 293(2) 1108.70(15) 2 1.503 1.154 516 1.61-26.00 6137
Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) T (K) V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) F(000) θ Range (°) Reflections collected Unique reflections	495.13 triclinic $P\bar{1}$ 9.5783(7) 10.1593(7) 13.0962(14) 97.7380(10) 100.3690(10) 116.8360(10) 293(2) 1084.19(16) 2 1.517 0.942 512 1.63-25.99 6015 4178	triclinic $P\bar{1}$ 10.448(4) 14.664(4) 15.179(4) 79.215(10) 78.396(13) 85.013(11) 200 2234.9(11) 4 1.543 0.919 1072 3.06-27.48 21127 10109	$\begin{array}{c} \text{monoclinic} \\ P_{21}/c \\ 9.9659(19) \\ 28.894(6) \\ 10.6565(14) \\ 90.00 \\ 122.320(12) \\ 90.00 \\ 293(2) \\ 2593.2(9) \\ 4 \\ 1.381 \\ 0.797 \\ 1120 \\ 2.37-28.00 \\ 16051 \\ 6138 \end{array}$	triclinic $P\bar{1}$ 9.4978(6) 10.2376(7) 13.3159(13) 100.4420(10) 98.5720(10) 115.7140(10) 293(2) 1108.70(15) 2 1.503 1.154 516 1.61-26.00 6137 4274
Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) γ (°) T (K) V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) F(000) θ Range (°) Reflections collected Unique reflections Goodness-of-fit (GOF) on F^2	495.13 triclinic $P\bar{1}$ 9.5783(7) 10.1593(7) 13.0962(14) 97.7380(10) 100.3690(10) 116.8360(10) 293(2) 1084.19(16) 2 1.517 0.942 512 1.63-25.99 6015 4178 0.960	triclinic $P\bar{1}$ 10.448(4) 14.664(4) 15.179(4) 79.215(10) 78.396(13) 85.013(11) 200 2234.9(11) 4 1.543 0.919 1072 3.06-27.48 21127 10109 1.058	$\begin{array}{c} \text{monoclinic} \\ P2_1/c \\ 9.9659(19) \\ 28.894(6) \\ 10.6565(14) \\ 90.00 \\ 122.320(12) \\ 90.00 \\ 293(2) \\ 2593.2(9) \\ 4 \\ 1.381 \\ 0.797 \\ 1120 \\ 2.37-28.00 \\ 16051 \\ 6138 \\ 1.065 \end{array}$	triclinic $P\bar{1}$ 9.4978(6) 10.2376(7) 13.3159(13) 100.4420(10) 98.5720(10) 115.7140(10) 293(2) 1108.70(15) 2 1.503 1.154 516 1.61-26.00 6137 4274 0.972
Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) T (K) V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) F(000) θ Range (°) Reflections collected Unique reflections Goodness-of-fit (GOF) on F^2 R_1^a , wR_2^b [$I > 2\sigma(I)$]	495.13 triclinic $P\bar{1}$ 9.5783(7) 10.1593(7) 13.0962(14) 97.7380(10) 100.3690(10) 116.8360(10) 293(2) 1084.19(16) 2 1.517 0.942 512 1.63-25.99 6015 4178 0.960 0.0319, 0.0682	triclinic $P\bar{1}$ 10.448(4) 14.664(4) 15.179(4) 79.215(10) 78.396(13) 85.013(11) 200 2234.9(11) 4 1.543 0.919 1072 3.06-27.48 21127 10109 1.058 0.0437, 0.1144	$\begin{array}{c} \text{monoclinic} \\ P2_1/c \\ 9.9659(19) \\ 28.894(6) \\ 10.6565(14) \\ 90.00 \\ 122.320(12) \\ 90.00 \\ 293(2) \\ 2593.2(9) \\ 4 \\ 1.381 \\ 0.797 \\ 1120 \\ 2.37-28.00 \\ 16051 \\ 6138 \\ 1.065 \\ 0.0489, 0.1605 \end{array}$	triclinic $P\bar{1}$ 9.4978(6) 10.2376(7) 13.3159(13) 100.4420(10) 98.5720(10) 115.7140(10) 293(2) 1108.70(15) 2 1.503 1.154 516 1.61–26.00 6137 4274 0.972 0.0507, 0.1263

^a $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|.$

^b $wR_2 = |\Sigma w(|F_0|^2 - |F_c|^2)|/\Sigma |w(F_0)^2|^{1/2}$, where $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$. $P = (F_0^2 + 2F_c^2)/3$.

Download English Version:

https://daneshyari.com/en/article/1335396

Download Persian Version:

https://daneshyari.com/article/1335396

Daneshyari.com