Polyhedron 72 (2014) 66-71

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Reactions of a diacetylenic tetracobalt carbonyl complex with monophosphine triphenylphosphine or diphosphines

Xu-Feng Liu*

Department of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, China

ARTICLE INFO

Article history: Received 28 November 2013 Accepted 27 January 2014 Available online 10 February 2014

Keywords: Cobalt carbonyl complex Phosphine ligand Carbonyl substitution Synthesis Crystal structure

ABSTRACT

1. Introduction

The well known complexes (μ -RC \equiv CR')Co₂(CO)₆ have been prepared by the reactions of $Co_2(CO)_8$ with alkynes since 1950s [1]. Studies on these cobalt carbonyl complexes, $(\mu$ -RC \equiv CR')Co₂(CO)₆, have attracted a great deal of interest due to their applications in organic syntheses [2], the Pauson-Khand reaction [3], the protection of alkynes and the marking of acetylenic steroids [4]. Phosphine ligand substitution in $(\mu$ -RC \equiv CR')Co₂(CO)₆ has been extensively studied in order to synthesize new complexes containing cobalt carbonyl [5–9]. The parent complex **1** was obtained by the reaction of 1,7-octadiyne with $Co_2(CO)_8$ [1]. However, substitution reactions of **1** are relatively rare in the literature. As a continuation of our previous work on carbonyl substitution reactions of the transition metal carbonyl complexes [10–13], we have initiated a study on the carbonyl substitution of **1** with a monophosphine or diphosphines and have successfully prepared a series of cobalt carbonyl complexes. In this paper, we will describe the synthesis and characterization of cobalt carbonyl derivatives containing a monophosphine or diphosphines via a carbonyl exchange reaction.

2. Experimental

2.1. Materials and methods

All reactions were performed using standard Schlenk and vacuum-line techniques under N₂ atmosphere. PPh₃, dppe, dppp, dppb and Me₃NO·2H₂O were available commercially and used as received. CH₂Cl₂ and MeCN were distilled over CaH₂ under N₂. **1** [1] was prepared according to literature procedures. IR spectra were recorded on a Nicolet MAGNA 560 FTIR spectrometer. ¹H, ³¹P anad ¹³C NMR spectra were obtained on a Bruker Avance 500 MHz spectrometer. Elemental analyses were performed with a Perkin-Elmer 240C analyzer, while ESI-MS data were obtained on a Bruker Micro TOF Q-II instrument.

2.2. Characterization of 1

IR (KBr disk, cm⁻¹): $v_{C} \equiv_{0} 2093$ (vs), 2049 (vs), 2028 (vs), 2005 (vs), 1995 (vs). ¹H NMR (500 MHz, CDCl₃, ppm): 6.09 (s, 2H, 2C \equiv CH), 2.96 (s, 4H, 2CH \equiv CCH₂), 1.84 (s, 4H, CH \equiv CCH₂ CH₂CH₂CH₂C \equiv CH). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): 199.88 (C \equiv O), 96.72 (C \equiv CH), 73.16 (C \equiv CH), 33.90, 31.47 (2s, CH₂).

CrossMark

2.3. Synthesis of (μ-HC=CCH₂CH₂CH₂CH₂CH₂C=CH-μ)[Co₂(CO)₅(PPh₃)]₂ (**2**)

To a solution of **1** (0.068 g, 0.1 mmol) and PPh₃ (0.052 g, 0.2 mmol) in CH₂Cl₂ (5 mL) was added a solution of Me₃NO·2H₂O (0.022 g, 0.2 mmol) in MeCN (5 mL). The new mixture was stirred for 1 h. The solvent was reduced in vacuo and the residue was subjected to TLC separation using CH_2Cl_2 /petroleum ether (v/v = 1:5) as the eluent. The main red band afforded 0.068 g (59%) of 2 as a red solid. Anal. Calc. for C₅₄H₄₀Co₄O₁₀P₂: C, 56.57; H, 3.52. Found: C, 56.88; H, 3.36%. IR (KBr disk, cm^{-1}): $v_C \equiv_0 2054$ (vs), 2000 (vs), 1953 (vs). ¹H NMR (500 MHz, CDCl₃, ppm): 7.50-7.29 (m, 30H, PhH), 5.19 (s, 2H, 2C=CH), 1.84-1.76 (m, 4H, 2CH=CCH₂), 1.21–1.08 (m, 4H, CH=CCH₂CH₂CH₂CH₂C=CH). ³¹P{¹H} NMR (200 MHz, CDCl₃, 85% H₃PO₄, ppm): 54.68 (s). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): 206.24, 205.14, 202.30 (C=0), 134.88, 134.55, 132.98, 132.90, 130.25, 128.53, 128.46 (PhC), 94.53 (C=CH), 71.73 (C=CH), 32.10, 31.57, 29.71 (CH₂). ESI-MS: m/z 1145.9421 [M⁺] (Calc. 1145.9425).

2.4. Synthesis of $(\mu$ -HC=CCH₂CH₂CH₂CH₂CH₂CH- μ)[Co₂(CO)₅]₂(dppe) (**3**) and $(\mu$ -HC=CCH₂CH₂CH₂CH₂C=CH- μ) [Co₂(CO)₆][Co₂(CO)₄(dppe)] (**4**)

To a solution of 1 (0.068 g, 0.1 mmol) and dppe (0.040 g, 0.1 mmol) in CH₂Cl₂ (5 mL) was added a solution of Me₃NO·2H₂O (0.022 g, 0.2 mmol) in MeCN (5 mL). The new mixture was stirred for 1 h. The solvent was reduced in vacuo and the residue was subjected to TLC separation using CH_2Cl_2 /petroleum ether (v/v = 1:3) as the eluent. The first red band afforded 0.020 g (20%) of **3** as a red solid, whilst the second red band afforded 0.016 g (16%) of 4 as a red solid. **3**: Anal. Calc. for C₄₄H₃₄Co₄O₁₀P₂: C, 51.79; H, 3.36. Found: C, 52.02; H, 3.59%. IR (KBr disk, cm⁻¹): v_C=0 2056 (vs), 1999 (vs), 1988 (vs), 1955 (vs). ¹H NMR (500 MHz, CDCl₃, ppm): 7.42-7.27 (m, 16H, o-PhH and m-PhH), 7.15-7.12 (m, 4H, p-PhH), 4.94 (s, 2H, 2C=CH), 2.91-2.79 (m, 4H, 2CH=CCH₂), 2.24-2.19 (m, 2H, PCH₂), 2.09–2.04 (m, 2H, PCH₂), 1.87–1.71 (m, 4H, CH \equiv CCH₂CH₂CH₂CH₂CCH). ³¹P{¹H} NMR (200 MHz, CDCl₂, 85% H₃PO₄, ppm): 49.46 (s). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): 207.74, 204.67, 201.70 (C=0), 136.81, 136.48, 133.68, 133.38, 133.01, 132.97, 130.59, 130.14, 129.84, 128.77 (PhC), 92.63 C=CH), 25.64 (t, J_{P-C} = 9.6 Hz, PCH₂). ESI-MS: *m*/*z* 1019.8929 [M⁺] (Calc. 1019.8955). 4: Anal. Calc. for C44H34C04O10P2: C, 51.79; H, 3.36. Found: C, 51.58; H, 3.54%. IR (KBr disk, cm^{-1}): $v_{c} \equiv_{0} 2056$ (vs), 1999 (vs), 1986 (vs), 1956 (vs). ¹H NMR (500 MHz, CDCl₃, ppm): 7.49-7.39 (m, 12H, m-PhH and p-PhH), 7.31-7.24 (m, 8H, o-PhH), 5.42 (s, 2H, 2C=CH), 3.06, 3.03, 2.86, 2.83 (AB q, J_{AB} = 3.9 Hz, 4H, 2CH CCH₂), 2.02 (d, J = 8.5 Hz, 2H, PCH₂), 1.88, 1.86 (2s, 6H, PCH₂ and CH=CCH₂CH₂CH₂CH₂C=CH). ${}^{31}P{}^{1}H{}$ NMR (200 MHz, CDCl₃, 85% H₃PO₄, ppm): 48.41 (s). ${}^{13}C{}^{1}H{}$ NMR (125 MHz, CDCl₃, ppm): 205.60, 204.17, 201.87 (C=0), 135.81, 135.49, 134.06, 133.76, 133.00, 132.96, 132.11, 132.08, 131.39, 131.35, 130.68, 130.35, 128.88, 128.84, 128.81 (PhC), 91.15 (C=CH), 70.56 (C=CH), 33.46, 28.93 (HC=CCH₂CH₂CH₂CH₂CCH), 25.41 (d, J_{P-C} = 13.5 Hz, PCH₂). ESI-MS: *m*/*z* 1019.8949 [M⁺] (calc. 1019.8955).

2.5. Synthesis of (μ-HC=CCH₂CH₂CH₂CH₂CH₂C=CH-μ)[Co₂(CO)₅]₂(dppp) (**5**)

To a solution of **1** (0.068 g, 0.1 mmol) and dppp (0.041 g, 0.1 mmol) in CH_2Cl_2 (5 mL) was added a solution of $Me_3NO\cdot 2H_2O$ (0.022 g, 0.2 mmol) in MeCN (5 mL). The new mixture was stirred for 1 h. The solvent was reduced *in vacuo* and the residue was subjected to TLC separation using CH_2Cl_2 /petroleum ether (v/v = 1:3)

as the eluent. The main red band afforded 0.030 g (29%) of **5** as a red solid. *Anal.* Calc. for $C_{45}H_{36}Co_4O_{10}P_2$: C, 52.25; H, 3.51. Found: C, 51.94; H, 3.27%. IR (KBr disk, cm⁻¹): $v_{C} \equiv_0 2060$ (vs), 2000 (vs), 1954 (vs). ¹H NMR (500 MHz, CDCl₃, ppm): 7.35–7.27 (m, 20H, PhH), 5.24 (s, 2H, 2C \equiv CH), 2.91–2.77 (m, 4H, 2CH \equiv CCH₂), 2.19–2.14 (m, 4H, 2PCH₂), 2.04–1.99 (m, 2H, PCH₂CH₂CH₂P), 1.90–1.85 (m, 4H, CH \equiv CCH₂CH₂CH₂CH₂C \equiv CH). ³¹P{¹H} NMR (200 MHz, CDCl₃, 85% H₃PO₄, ppm): 45.40 (s). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): 206.14, 204.31, 202.04 (C \equiv O), 137.11, 136.76, 135.45, 135.12, 131.53, 131.47, 131.45, 131.34, 131.26, 130.17, 131.01, 128.65, 128.58, 128.55 (PhC), 91.98 (C \equiv CH), 71.46 (C \equiv CH), 31.97, 31.87 (HC \equiv CCH₂CH₂CH₂CH₂C \equiv CH), 29.72, 29.17 (PCH₂CH₂CH₂CH₂CH₂CH₂CH₂CH), CH₂P). ESI-MS: *m/z* 1034.9095 [M⁺+H] (Calc. 1034.9190).

2.6. Synthesis of $(\mu$ -HC \equiv CCH₂CH₂CH₂CH₂C \equiv CH- μ)[Co₂(CO)₅]₂(dppb) (**6**)

To a solution of 1 (0.068 g, 0.1 mmol) and dppb (0.043 g, 0.1 mmol) in CH₂Cl₂ (5 mL) was added a solution of Me₃NO·2H₂O (0.022 g. 0.2 mmol) in MeCN (5 mL). The new mixture was stirred for 1 h. The solvent was reduced in vacuo and the residue was subjected to TLC separation using CH_2Cl_2 /petroleum ether (v/v = 1:3) as the eluent. The main red band afforded 0.038 g (36%) of 6 as a red solid. Anal. Calc. for C₄₆H₃₈Co₄O₁₀P₂: C, 52.70; H, 3.65. Found: C, 52.54; H, 3.89%. IR (KBr disk, cm^{-1}): $v_c \equiv_0 2059$ (vs), 2000 (vs), 1954 (vs). ¹H NMR (500 MHz, CDCl₃, ppm): 7.65, 7.42 (2s, 20H, PhH), 4.71 (s, 2H, 2C=CH), 2.96–2.72 (m, 4H, 2CH=CCH₂), 2.12-2.06 (m, 8H, PCH₂CH₂CH₂CH₂P), 1.87 (s, 4H, CH=CCH₂CH₂ CH₂CH₂C≡CH). ³¹P{¹H} NMR (200 MHz, CDCl₃, 85% H₃PO₄, ppm): 46.60 (s). ¹³C{¹H} NMR (125 MHz, CDCl₃, ppm): 207.86, 204.20, 201.97 (C=0), 133.45, 133.36, 131.84, 131.56, 130.74, 129.72, 129.52, 128.62 (PhC), 91.59 (C=CH), 73.72 (C=CH), 33.50, 32.58 $(HC \equiv CCH_2CH_2CH_2CH_2C \equiv CH)$, 30.94 (d, $J_{P-C} = 21.9$ Hz, PCH₂), 25.62 (d, J_{P-C} = 12.1 Hz, PCH₂CH₂). ESI-MS: m/z 1047.9249 [M⁺] (Calc. 1047.9268).

2.7. X-ray structure determination

Single crystals of **1–3** and **6** suitable for X-ray diffraction analysis were grown by slow evaporation of $CH_2Cl_2/hexane$ solutions at 4 °C. A single crystal of **1–3** or **6** was mounted on a Rigaku MM-007 CCD diffractometer. Data were collected at 113 or 293 K using a graphite monochromator with Mo K α radiation ($\lambda = 0.71073$ Å) in the ω - ϕ scanning mode. Data collection, reduction and absorption corrections were performed by the CRYSTALCLEAR program [14]. The structures were solved by direct methods using the SHELXS-97 program and refined by full-matrix least-squares techniques using SHELXL-97 [15] on F^2 . Hydrogen atoms were located using the geometric method. Details of crystal data, data collections and structure refinement are summarized in Table 1.

3. Results and discussion

3.1. Synthesis and characterization

As shown in Scheme 1, the reactions of 1 with PPh₃, dppp or dppb in the presence of $Me_3NO\cdot2H_2O$ afforded 2, 5 and 6 in 29–59% yields, respectively, whereas the reaction of 1 with dppe in the presence of $Me_3NO\cdot2H_2O$ resulted in the formation of 3 and 4 in 20 and 16% yields, respectively. While complex 2 contains the monophosphine PPh₃, complexes 3–6 contain the bridging diphosphines dppe, dppp or dppb.

The new complexes 2-6 are air-stable red solids, which have been characterized by elemental analysis and various spectroscopic techniques. The IR spectra of 2-6 displayed three to four Download English Version:

https://daneshyari.com/en/article/1335403

Download Persian Version:

https://daneshyari.com/article/1335403

Daneshyari.com