Polyhedron 63 (2013) 111-116

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Cis- and *trans*-[SnR₂] configurational isomers in diorganotin(IV) complexes containing mono or bidentate N-donor ligands

Badri Z. Momeni^{a,*}, Sadegh Kheirandish^a, Niloofar Aghamohammadi^a, Vahid Noroozi^a, Behrouz Notash^b, Frank Rominger^c

^a Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran 15418, Iran ^b Chemistry Department, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, Iran ^c Organisch-Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany

ARTICLE INFO

Article history: Received 9 June 2013 Accepted 10 July 2013 Available online 19 July 2013

Keywords: Diorganotin Pyridyl Spectroscopy Geometry Crystal structure

ABSTRACT

The reaction of diorganotin(IV) complexes SnR_2Cl_2 (R = Et, Ph) with the bidentate pyridyl ligand of 4,4'-di*tert*-butyl-2,2'-bipyridine (bu₂bpy) or phendione (phendione = 1,10-phenanthroline-5,6-dione) resulted in the formation of the hexa-coordinated 1:1 adducts of $[SnR_2Cl_2(NN]]$ {R = Et, NN = bu₂bpy (1); R = Et, NN = phendione (2); R = Ph, NN = bu₂bpy (3)}. On the other hand, the reaction of $SnPh_2Cl_2$ with the corresponding monodentate ligand of 4-*tert*-butylpyridine (bupy) affords the 1:2 adduct of $[SnPh_2Cl_2$ (bupy)₂] (4). The solid state X-ray determination of complex $[SnEt_2Cl_2(bu_2bpy)]$ (1) revealed that the complex 1 contains the hexa- coordinated tin(IV) atom in an octahedral geometry with the *trans*- $[SnEt_2]$ configuration while the X-ray crystal structure determination of complex $[SnPh_2Cl_2(bu_2bpy)]$ (3) reveals that the tin atom is hexa-coordinated in a distorted octahedral geometry with an unusual feature of the *cis*- $[SnPh_2]$ configuration. On the other hand, two carbon, two chlorine and two nitrogen atoms from two pyridyl ligands form an octahedral geometry around tin(IV) atom with *trans*- C_2 , *trans*- N_2 and *trans*- Cl_2 configurations in $[SnMe_2Cl_2(bupy)_2]$ (5). The resulting products have been fully characterized by elemental analysis, multinuclear NMR (¹H, ¹³C, ¹¹⁹Sn) and ²D NMR (HH- COSY, ¹H-¹³C HMQC) spectroscopy.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The coordination chemistry of diorganotin(IV) acceptors with nitrogen donor atoms have been widely explored, and a large number of the complexes have been characterized structurally in the solid state by X-ray diffraction [1-4]. Pyridyl ligands such as 2,2'(4,4')-bipyridyl ligands have been used in the preparation of coordination polymers of organotin compounds [5-6]. Such studies are of particular chemical and pharmaceutical interest, since some of these complexes show biological activity [7–9]. There is a relationship between the antitumor activity of organotin(IV) adducts containing N-donor ligands and Sn-N bond length. The active tin compounds have average Sn-N bond lengths more than 2.39 Å [10]. On the other hand, polypyridyl ligands such as 2,2':6',2"-terpyridyl moiety react with tin(IV) compounds to give hexa- or hepta- coordinated tin complexes [11-13]. It is well known that the diorganotin dihalides containing monodentate ligands have cis- or trans-[SnR₂] configuration whereas those with bidentate ligands usually have cis configuration. It has been found that cis-halogens are necessary for the effectiveness as antitumour activity [14]. Accordingly, few studies have been devoted to date to the case of diorganotin complexes with cis-[SnR₂] configuration. For example, the reaction of SnMe₂Cl₂ with 2,2'-bipyridine (bpy), 4,4'-di-tert-butyl-2,2'-bipyridine (bu2bpy) or 1,10-phenanthroline-5,6-dione (phendione) affords the hexa-coordinated complexes $[SnMe_2Cl_2(NN)]$ (NN = bpy, bu₂bpy, phendione) with the trans-[SnMe₂] configuration [4,15]. Crystal structure determination of [SnPh₂Cl₂(phendione) shows the *trans* configuration of [SnPh₂] which has been confirmed by the results obtained from PM3 calculations [16]. Moreover, dibenzyltin(IV) dichloride, ethylphenyltin(IV) dichloride or dibutyltin(IV) dichloride react with 1,10-phenanthroline to afford the octahedral complexes of [SnR₂ $Cl_2(phen)$] {R₂ = (PhCH₂)₂, EtPh, Bu₂} with two *trans*-C₂ groups [17–19]. Similarly, trans-configuration of [SnR₂] is preferred in the crystal structure of $[SnEt_2Cl_2L]$ (L = 2-(2'-pyridyl)quinoxaline) in which L has chelating properties of 2,2'-bipyridine with the bridging properties of quinoxaline [20]. However, *cis*-[SnR₂] is preferred for the diaryltin dithiocyanate complexes due to the steric effects of the thiocyanate groups [3,14]. Notably, [Sn(4-ClC₆H₄)₂-Cl₂(4,4'-Me₂bpy)] is the first example of the isolation of both cis- and trans-[SnR2] configurational isomers [21]. The reaction of organotin(IV) compounds with ligand donors depends upon the nature of organic group R on the organotin compounds, nature of donor ligand, donor ratio, halide or pseudohalide, reaction temperature and solvent [22]. Recently, we have found that the reaction of

POLYHEDRON

^{*} Corresponding author: Tel.: +98 21 22850266; fax +98 21 22853650. *E-mail address:* momeni@kntu.ac.ir (B.Z. Momeni).

^{0277-5387/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.poly.2013.07.011

dimethyltin dichloride with 4'-substituted terpyridyl ligands depends upon the nature of 4'-substituted terpyridyl ligand in which the anion exists as Cl^- or $SnM_2Cl_3^-$ or both forms [13].

We have now undertaken a study of the synthesis and spectroscopic characterization of some diorganotin(IV) complexes containing the monodentate pyridyl ligand of 4-*tert*-butylpyridine (buyy) and its corresponding chelate ligand of 4,4'-di-*tert*-butyl-2,2'-bipyridine (bu₂bpy) and 1,10-phenanthroline-5,6-dione (phendione) to investigate the donating ability of these ligands towards diorganotin dichlorides (Scheme 1). The resulting products have been fully characterized by elemental analysis, multinuclear NMR (¹H, ¹³C, ¹¹⁹Sn) and ²D NMR (HH- COSY, ¹H-¹³C HMQC) spectroscopy. The molecular structures of [SnEt₂Cl₂(bu₂bpy)], [SnPh₂Cl₂(bu₂bpy)] and [SnMe₂Cl₂(bupy)₂] were determined by X-ray crystallography. The structures of resulting products demonstrate that the nature of functional group on the pyridyl ligand and organic group affect on the coordination geometry of organotin(IV) in the solid state.

2. Experimental

2.1. General remarks

All chemicals were reagent grade and were used as received. Elemental analyses were performed by a Perkin-Elmer 2400 II elemental analyzer. NMR data were recorded using Bruker Biospin GmbH 400 and 500 MHz spectrometers. All the chemical shifts and coupling constants are reported in ppm and Hz, respectively. The ¹H, ¹³C and ¹¹⁹Sn NMR spectra are reported relative to TMS (¹H, ¹³C), SnMe₄ (¹¹⁹Sn). [SnMe₂Cl₂(bupy)₂] and phendione were prepared according to the literature [15,23]. Single crystals of [SnMe₂Cl₂(bupy)₂] (**5**) suitable for X-ray structure determination were grown from an acetone solution.

2.2. Preparation of [SnEt₂Cl₂(bu₂bpy)] (1)

A solution of 4,4'-di-tert-butyl-2,2'-bipyridine (54 mg, 0.20 mmol) in diethyl ether (5 mL) was reacted with a solution of SnEt₂Cl₂ (50 mg, 0.20 mmol) in diethyl ether (5 mL) to give a white solid. The product was then filtered off and washed with diethyl ether and air dried. Yield: 60%; m.p. 214-215 °C. *Anal.* Calc. for C₂₂H₃₄Cl₂N₂Sn: C, 51.20; H, 6.64; N, 5.43. Found: C, 51.21; H, 6.72; N, 5.43%. NMR data in CDCl₃: δ ⁽¹H) 1.50 [s, 18H, ^tBu], 1.03 [t, 6H, ³J(^{119/117}Sn-H) = 185.0 Hz, ³J(HH) = 7.6 Hz, CH₃], 1.59 [q, 4H, ²J(¹¹⁹Sn-H) = 110.0 Hz, ²J(¹¹⁷Sn-H) = 100.0 Hz, ³J(HH) = 7.6 Hz, CH₂]; (bu₂bpy group) 7.68 [dd, 2H, ³J(HH) = 5.6 Hz, ⁴J(HH) = 1.6 Hz, H^{5.5'}], 8.22 [s, 2H, H^{3.3'}], 9.40 [d, 2H, ³J(HH) = 5.6 Hz, H^{6.6'}]; δ (¹³C) 30.4 [s, terminal C atoms of ^tBu groups], 35.7 [s, central C atoms of ^tBu groups], 35.1 [s, ⁻¹J(¹¹⁹Sn-C) = 1062 Hz, ⁻¹J(¹¹⁷Sn-C) = 1008 Hz, CH₂], 10.8 [s, ²J(^{119/117}Sn-C) = 54 Hz, CH₃]; (bu₂bpy group) 165.5 (s, C₂), 118.7 (s, C₃), 149.4 (s, C₄), 123.6 [s, C₅], 148.7 (s, C₆); δ (¹¹⁹Sn) –248 (br).

2.3. Preparation of [SnEt₂Cl₂(phendione)] (2)

A solution of phendione (74 mg, 0.35 mmol) in dichloromethane (5 mL) was added to a solution of SnEt₂Cl₂ (88 mg, 0.35 mmol) in dichloromethane (5 mL). The solution was stirred for 24 h. The solvent was removed under reduced pressure. The resulting yellow residue was recrystallized from dichloromethane/diethyl ether and washed with diethyl ether and air dried. Yield: 55%; m.p. 144–146 °C. *Anal.* Calc. for C₁₆H₁₆Cl₂N₂O₂Sn: C, 41.97; H, 3.52; N, 6.12. Found: C, 41.83; H, 3.20; N, 5.97%. NMR data in CDCl₃: $\delta(^{1}H)$ 1.31 [t, 6H, $^{3}J(^{119}Sn-H) = 160.1 \text{ Hz}, ~^{3}J(^{117}Sn-H) = 152.1 \text{ Hz}, ~^{3}J(HH) = 8.0 \text{ Hz}, CH_{3}$], 1.70 [q, 4H, $^{2}J(^{119}Sn-H) = 80.0 \text{ Hz}, ~^{2}J(^{117}Sn-H) = 72.0 \text{ Hz}, ~^{3}J(HH) = 8.0 \text{ Hz}, CH_{2}$]; (phendione group) 7.80 [dd, 2H, $^{3}J(HH) = 7.6 \text{ Hz}, ~^{3}J(HH) = 4.8 \text{ Hz}, H^{2.9}$], 8.68 [dd, 2H, $^{3}J(HH) = 8.0 \text{ Hz}, H^{4.7}$]; $\delta(^{13}C)$ 27.0 [s, $^{1}J(^{119/117}Sn-C)$ not resolved], 10.1 [s, $^{2}J(^{119/119/117}Sn-C) = 65 \text{ Hz}$]; (phendione group) 126.9 (s, C₃), 128.6 (s, C₄), 138.7 (s, C₁₂), 150.6 [s, C₂], 155.4 (s, C₁₁), 177.3 (s, C₅).

2.4. Preparation of $[SnPh_2Cl_2(bu_2bpy)]$ (3)

A solution of 4,4'-di-tert-butyl-2,2'-bipyridine (50 mg, 0.18 mmol) in acetone (5 mL) was added to a solution of $SnPh_2Cl_2$ (50 mg, 0.18 mmol) in acetone (5 mL). The solution was stirred for 24 h. The resultant colorless solution was evaporated to dryness to afford a white solid and then filtered off. The product was then washed with diethyl ether and air dried. Yield: 70%; m.p. 228 °C. Anal. Calc. for C₃₀H₃₄Cl₂N₂Sn: C, 58.85; H, 5.60; N, 4.58. Found: C, 58.70; H, 5.62; N, 4.47%. NMR data in CDCl₃: δ (¹H) (phenyl groups) 7.39 [m, 2H, 3 *J*(HH) = 7.2 Hz, para hydrogens], 7.46 [t, 4H, $^{3}J(HH) = 7.2$ Hz, meta hydrogens], 8.38 [d, 4H, $^{3}J(^{119/117}Sn -$ H) = 89.8 Hz, ³*J*(HH) = 6.8 Hz, ortho hydrogens]; 1.44 [s, 18H, ^tBu]; (bu₂bpy group) 7.50 [dd, 2H, ${}^{3}J(HH) = 6.0$ Hz, ${}^{4}J(HH) = 1.2$ Hz, $H^{5,5'}_{5,5'}$, 8.27 [s, 2H, $H^{3,5'}_{3,5'}$], 8.36 [d, 2H, ³J(HH) = 6.0 Hz, $H^{6,6'}_{5,5'}$], $\delta^{(13C)}_{12}$ (phenyl groups) 143.4 [s, ¹J(^{119/117}Sn–C) not resolved, C_{ipso}], 136.2 [s, ²J(^{119/117}Sn–C) = 65.4 Hz, C_{ortho}], 128.4 [s, ³J(^{119/117}Sn–C) = 90.6 Hz, C_{meta}], 128.8 [s, ⁴J(^{119/117}Sn–C) = 17.1 Hz, C_{para}]; 30.4 [s, terminal C atoms of 'Bu groups], 35.7 [s, central C atoms of 'Bu groups]; (bu₂bpy group) 166.0 (C₂), 118.4 (C₃), 148.4 (C₄), 124.1 $[s, {}^{3}J({}^{119/117}Sn-C) = 17.1 \text{ Hz}, C_{5}], 144.8 (s, {}^{2}J({}^{119/117}Sn-C) = 31.2 \text{ Hz},$ C₆); δ (¹¹⁹Sn) –359 (sh). Crystals suitable for X-ray structure determination were grown from an acetone solution.

2.5. Preparation of $[SnPh_2Cl_2(bupy)_2]$ (4)

4-*tert*-Butyl pyridine (0.04 mL, 0.26 mmol) was added to a solution of SnPh₂Cl₂ (50 mg, 0.14 mmol) in acetone (5 mL). The solution was stirred for 48 h. The solvent was removed under reduced pressure. The resulting residue was recrystallized from acetone/n-hexane and washed with n-hexane and air dried. Yield: 80%; m.p. 145 °C. *Anal.* Calc. for C₃₀H₃₆Cl₂N₂Sn: C, 55.04; H, 5.56; N,

Download English Version:

https://daneshyari.com/en/article/1335564

Download Persian Version:

https://daneshyari.com/article/1335564

Daneshyari.com