


Contents lists available at ScienceDirect

#### Polyhedron

journal homepage: www.elsevier.com/locate/poly



# Remarkable *in vitro* anti-HIV activity of new silver(I)– and gold(I)–N-heterocyclic carbene complexes. Synthesis, DNA binding and biological evaluation



Oriel Sánchez <sup>a,b</sup>, Sorenlis González <sup>b</sup>, Ángel R. Higuera-Padilla <sup>b</sup>, Yokoy León <sup>c</sup>, David Coll <sup>d</sup>, Mercedes Fernández <sup>e</sup>, Peter Taylor <sup>e</sup>, Izaskun Urdanibia <sup>e</sup>, Héctor R. Rangel <sup>f</sup>, Joseph T. Ortega <sup>f</sup>, William Castro <sup>b,\*</sup>, María Cristina Goite <sup>c,\*</sup>

- a Departamento de Ouímica. Facultad de Ciencias. Universidad de los Andes. Merida. Venezuela
- b Laboratorio de Química Bioinorgánica, Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), 1020-A Caracas, Venezuela
- c Laboratorio de Química de Metales de Transición, Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), 1020-A Caracas, Venezuela
- d Laboratorio de Química Computacional, Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), 1020-A Caracas, Venezuela
- <sup>e</sup> Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), 1020-A Caracas, Venezuela

#### ARTICLE INFO

## Article history: Received 6 November 2015 Accepted 8 February 2016 Available online 10 February 2016

Keywords: Metal-NHC complexes DNA binding Lipophilicity Cytotoxic Anti-HIV activity

#### ABSTRACT

A novel metallomacrocyclic silver complex  $[Ag(C_{13}H_{13}N_5)]_2Br_2$  **1** and a bimetallic bridged gold complex  $[Au_2(C_{13}H_{13}N_5)Cl_2]$  **2** derived from 2,6-bis(3-methylimidazolin-2-yliden-1-yl)pyridine dibromide **L1** have been synthesized and fully characterized by UV-Vis, elemental analysis, FT-IR, NMR techniques and DFT calculations. The DNA interactions with the compounds were investigated by UV-spectrophotometric studies, viscosity measurements and DNA electrophoresis. Additionally, the lipophilicity values were determined from the water/n-octanol partition coefficient. Experimental data indicated that all the compounds interacted with DNA, through a non-covalent binding mode. **L1** and **2** were found to be hydrophilic character while **1** was somewhat lipophilic. The biological activities of **L1**, **1** and **2** were tested against a panel of cancer cell lines (MCF-7, PC-3, A459, HeLa, HT-29 and the 4T1 murine tumor cell line). *In vitro* antiviral studies against HIV-1 were performed in infected MT4 leukemia cells. All the compounds exhibited a low activity against the cell lines, associated possibly with low lipophilicity values. However, complexes **1** and **2** showed remarkable viral inhibition at low concentrations. The complexes may inhibit virus infectivity through interaction with the HIV-1 envelope proteins.

© 2016 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Following the isolation of the first stable N-heterocyclic carbene (NHC) 1,3-bis(adamantyl)imidazol-2-ylidene by Arduengo et al. [1], there has been intense research on such as compounds due to their versatility as ligands for metallic complexes. Their bonding properties have been described by spectroscopic [2–4] and computational studies [5,6], showing that NHCs have strong  $\sigma \to d$  donation, and the filled and empty orbitals  $\pi$ ,  $\pi^*$  may participate in NHC–metal bond. Modifications of the N-substituents and architectures of the NHC would produce drastic changes in the donor

electronic properties of the carbene moieties. N-substituents have been used to control the steric pressure both on the carbene and the coordinated metal center, and are a powerful tool in the design of NHC-metal complexes.

The introduction of N-substituents with additional donor atoms such as N, O or S on NHC moieties offers the possibility of coordination or interaction with the metal center through chelation. This kind of coordination provides additional stability and rigidity to the NHC complex, improving their ability for slow metal release [7]. These features make them promising candidates in the field of organometallic chemistry and more recently for bioorganometallic chemistry. NHC with late transition metal complexes (Ag, Au) have generated great interest due to effectiveness as antimicrobial and anticancer agents [8,9]. Among their principal advantages is found the stabilization that the NHC offers to the metal center, allowing slow cation release and providing a constant

f Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), 1020-A Caracas, Venezuela

<sup>\*</sup> Corresponding authors. Tel./fax: +58 212 5041642 (W. Castro). Tel.: +58 212 5041740; fax: +58 212 5041350 (M. Goite).

 $<sup>\</sup>hbox{\it E-mail addresses:} \ \ wcastro 10@gmail.com \ (W. \ Castro), \ hamarkeys@gmail.com \ (M.C. \ Goite).$ 

concentration of the therapeutic agent [8]. Furthermore, easy functionalization of NHC through N-substituents permits the modulation of the lipophilic/hydrophilic properties of such complexes, an important feature for their use as therapeutics agents.

Thus, chelated carbenes containing rigid aromatic linkers between imidazole rings have been used to obtain bimetallic silver and gold complexes. Youngs et al. synthetized the first water-soluble Ag(I)-NHC complexes based in 2,6-bis(ethanolimidazolemethyl)pyridine hydroxide and 2,6-bis(propanolimidazolemethyl)pyridine hydroxide, which showed a improved antimicrobial activities against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa over silver nitrate [10]. In the same year, Berners-Price et al. reported a series of dinuclear Au(I) complexes of imidazolium-linked cyclophanes and studied their biological behavior in isolated mitochondria [11,12]. The mitochondrion plays a fundamental role in programmed cellular death or apoptosis and is considered as a target in the development of new cancer chemotherapeutic agents [12]. These Au(I) complexes could induce Ca<sup>2+</sup> sensitive Mitochondrial Permeability Transition (MPT) as evidenced by mitochondrial swelling, leading to cellular death [12,13]. More recently, a new family of benzimidazole and imidazole-based Ag(I)-NHC complexes, with N-allyl [7,14] and N-alkyl [15] substituents using p-xylyl or 2,6-lutidinyl as linker have been reported. Anticancer studies using HCT-116 cells showed that these complexes are active with IC<sub>50</sub> values (50% inhibitory concentration) almost five times lower than the control drug 5-fluorouracil. In fact, Ag(I)-NHC and Au(I)-NHC complexes have presented excellent antitumor, antiproliferative and antimitochondrial activities, suggesting them to be good candidates as anticancer agents [16,17] as well as stimulating the study of their potential activity against other diseases.

Metals drugs containing Au(I) have been studied as anti-HIV agents from the late 80's showing minimal toxicity compared to most Au(III) complexes, due to the thermodynamic stability of Au(I) in biological media [18]. In the two principal mechanisms of action, inhibition of reverse transcriptase (RT) or inhibition of viral entry (infectivity), the key role of Au(I) is the formation of reactive gold-thiols intermediaries through ligand exchange with cysteinyl residues on the surface of enzymes or proteins of the viral

envelope [18]. Most of the complexes tested possess ligands of biological interest, such as thioglucose [19], thiomalate [19,20] and phosphines [21]. However, as far as we know, anti-HIV activity of Ag(I) or Au(I)–NHC complexes has not been reported and the relative simple manipulation of these NHC ligands remains unexploited.

Based on these reports, we decided to use an imidazole-based NHC with a pyridine rigid linker as ligand for Ag(I) and Au(I) complexes. 2,6-Bis(3-methylimidazolin-2-yliden-1-yl)pyridine dibromide (L1) is a known pincer carbene widely used in several transition metal reactions [22-26]. Its monometallic complexes exhibit high thermal stability [27] and in the case of metallocycles, the interaction between pyridinic nitrogen and metal center reduces the ligand dissociation tendency through formation of an additional stable system [15]. Thus, L1 is a good candidate as ligand and as far as we know, the biological activities of its silver and gold complexes have not vet been explored. Here, we report the synthesis and characterization of two new complexes  $[Ag(C_{13}H_{13}N_5)]_2Br_2$  **1** and  $[Au_2(C_{13}H_{13}N_5)Cl_2]$  **2** with 2,6-bis(3methylimidazolin-2-yliden-1-yl)pyridine dibromide L1 as an NHC precursor, as well as studies of their interactions with CT-DNA (Calf thymus DNA) using differents physical and spectroscopic techniques. Moreover, cytotoxicity assays of the compounds were carried out on human tumors cell lines while the in vitro antiviral activity was evaluated in MT4 cells infected with HIV-1.

#### 2. Materials and methods

#### 2.1. Reagents, starting materials and instrumentation

All syntheses were carried out under inert atmosphere and in the absence of light. The solvents were previously dried and distilled before use following standard methods [28]. 2,6-Bis(3-methylimidazolin-2-yliden-1-yl)pyridine dibromide **L1** and the gold precursor salt AuCl(THT) were prepared according to reported methods [29,30]. The spectroscopic data for **L1** is shown in Table 1 and in the Supporting information. <sup>1</sup>H and <sup>13</sup>C NMR spectra were obtained on a Bruker Advance spectrometer at 300 and 500 MHz.

Table 1
Spectroscopic characterization of compounds L1, 1 and 2.

| Compounds                                                                                            | $v(CO)^a (cm^{-1})$                                           | $^{1}$ H NMR ( $\delta$ , ppm) $^{\rm b}$                                                                                                                                                                                                                           | <sup>13</sup> C NMR ( $\delta$ , ppm) <sup>c</sup>                                                                                                                                                                                        | UV–Vis $\lambda$ nm ( $\epsilon$ cm <sup>-1</sup> M <sup>-1</sup> ) <sup>d</sup> |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Ligand 2,6-bis(3-methylimidazolin-2-yliden-1-yl)pyridine dibromide <b>L1</b>                         | 3028m<br>1610m<br>1535m<br>1469s<br>1362w<br>1233s            | 10.63 (s, 2H) Imidazolium- <i>H</i> 2<br>8.81 (s, 2H) Imidazolium- <i>H</i> 5<br>8.60 (t, <i>J</i> = 8.1 Hz) Pyridine- <i>H</i> 8<br>8.25 (d, 2H, <i>J</i> = 8.1 Hz) Pyridine- <i>H</i> 7<br>8.07 (s, 2H) Imidazolium- <i>H</i> 4<br>4.04 (s, 6H) N-CH <sub>3</sub> | 145.22 Pyridine- <i>C</i><br>144.88 Pyridine- <i>C</i> 6 ×2<br>136.32 Imidazolium- <i>C</i> 2 ×2<br>124.98 Imidazolium- <i>C</i> 4 ×2<br>119.08 Imidazolium- <i>C</i> 5 ×2<br>114.02 Pyridine- <i>C</i> 7 ×2<br>36.48N-CH <sub>3</sub> ×2 | 214 (14438)<br>281 (7034.5)                                                      |
| Complex [Ag(C <sub>13</sub> H <sub>13</sub> N <sub>5</sub> )] <sub>2</sub> Br <sub>2</sub> <b>1</b>  | 3103w<br>2904sh<br>1608w<br>1603m<br>1461m<br>1399vw<br>1233w | 8.46 (t, 1H, <i>J</i> = 8.0 Hz) Pyridine- <i>H</i> 8<br>8.31 (s, 2H) Imidazolium- <i>H</i> 5<br>8.02 (d, 2H, <i>J</i> = 8.0 Hz) Pyridine- <i>H</i> 7<br>7.64 (s, 2H9 Imidazolium- <i>H</i> 4<br>3.15 (s, 6H) 2 x N-CH <sub>3</sub>                                  | 161.46 Imidazolium C2-Ag ×2<br>148.39 Pyridine-C6 ×2<br>143.99 Pyridine-C8<br>124.37 Imidazolium-C4 ×2<br>119.76 Imidazolium-C5 ×2<br>113.88 Pyridine-C7 ×2<br>38.65N-CH <sub>3</sub> ×2 (in CDCl3)                                       | 249 (11895)<br>283 (7548.3)                                                      |
| Complex [Au <sub>2</sub> (C <sub>13</sub> H <sub>13</sub> N <sub>5</sub> )Cl <sub>2</sub> ] <b>2</b> | 3134w<br>3104w<br>2930w<br>1604m<br>1446s<br>1391w<br>1238m   | 8.33-8.43 (m, 3H) Pyridine- <i>H</i><br>8.19 (d, 2H, <i>J</i> = 2.0 Hz) Imidazolium- <i>H5</i><br>7.75 (d, 2H, <i>J</i> = 2.0 Hz) Imidazolium- <i>H4</i><br>3.90 (s, 6H) 2× N–CH <sub>3</sub>                                                                       | 168.88 Imidazolium C2-Ag ×2<br>149.09 Pyridine-C6 ×2<br>142.67 Pyridine-C8<br>124.05 Imidazolium-C4 ×2<br>120.83 Imidazolium-C5 ×2<br>117.56 Pyridine-C7 ×2<br>38.74N-CH <sub>3</sub> ×2                                                  | 231 (14700)<br>284 (6509.8)                                                      |

a C<sub>6</sub>H<sub>12</sub>.

<sup>&</sup>lt;sup>b</sup> DMSO-*d*<sub>6</sub>, 300 MHz.

c DMSO-d<sub>6</sub>, 100 MHz.

d Solvents indicate in experimental section.

#### Download English Version:

### https://daneshyari.com/en/article/1335585

Download Persian Version:

https://daneshyari.com/article/1335585

<u>Daneshyari.com</u>