Polyhedron 103 (2016) 126-130

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Synthesis and characterization of $Ru_2(\eta^2-DmAniF)_2(\mu-DmAniF)_2(\mu-OAc)$ (μ -O)

Stacey R. Opperwall^a, Bin Liu^{b,*}, Alice L. Pilo^a, Zhi Cao^a, Phillip E. Fanwick^a, Tong Ren^{a,*}

^a Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA ^b Department of Chemistry, Northwest University, Xi'an City 710069, PR China

ARTICLE INFO

Article history: Received 3 August 2015 Accepted 2 September 2015 Available online 5 September 2015

Dedicated to Professor Malcolm Chisholm, a dear friend and pioneer in M–M bond chemistry, on the occasion of his 70th birthday.

Keywords: Diruthenium High oxidation state Magnetism Electrochemistry Hybrid-structure

1. Introduction

Metal-metal bonded diruthenium compounds have been shown to exhibit a wide range of interesting properties including redox flexibility, rich spin states and ability to catalyze oxidative transformation [1]. A number of conjugated diruthenium alkynyl compounds have been investigated as the prototype of molecular wires by our laboratory [2–8] and others [9,10], and incorporated into nano-devices [11–13]. Incorporation of diruthenium units into ordered 1D [14–16] and 3D structures [17] through axial ligation has led to materials of interesting magnetic properties [18–21]. Diruthenium(II,III) tetracarboxylates and derivatives are excellent catalysts for organic sulfide oxygenation [22–26] and C=C bond cleavage reactions [27].

Along with the laboratories of Cotton [28–30] and Jiménez-Aparicio and co-workers [31–33], our laboratory has developed robust synthetic methods to prepare the $Ru_2(DArF)_{4-x}(OAc)_x$ type compounds, where DArF is diarylformamidinate and x = 1-3 [34–36]. The labile nature of acetate ligands in $Ru_2(DArF)_{4-x}(OAc)_x$ allows for their substitution by bridging N,N'-bidentate ligands, which enables the ensuing peripheral modification through cross

* Corresponding authors. *E-mail addresses:* liubin@nwu.edu.cn (B. Liu), tren@purdue.edu (T. Ren).

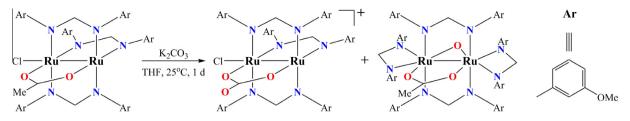
ABSTRACT

A new diruthenium compound, $Ru_2(\eta^2-DmAniF)_2(\mu-DmAniF)_2(OAc)(O)$ (1), where DmAniF is N,N'-di(*m*-methoxyphenyl)formamidinate, was isolated as a secondary product from the reaction between $Ru_2(DmAniF)_3(OAc)Cl$ and K_2CO_3 , and its formulation was established using both single crystal X-ray diffraction and high resolution mass-spectrometry techniques. Compound 1 has an S = 3/2 ground state, and exhibits an unusually large zero-field splitting ($D = 308 \text{ cm}^{-1}$) as revealed by the measurement of temperature dependent magnetism.

© 2015 Elsevier Ltd. All rights reserved.

coupling reactions [37–41]. Currently we are interested in the preparation of the Ru₂(DArF)₃(μ -CO₃) type compounds, and possible on-complex reduction of the coordinated carbonate. During the course of preparing K[Ru₂(DmAniF)₃(μ -CO₃)Cl] (DmAniF = *N*,*N'*-di(*m*-methoxyphenyl)-formamidinate), the title compound Ru₂(η^2 -DmAniF)₂(μ -DmAniF)₂(OAc)(O) (1) was isolated as a byproduct and characterized. Described herein are the molecular structure, electrochemical and magnetic properties of this unusual Ru₂(III,IV) species.

2. Results and discussion


2.1. Synthesis

Aiming at the preparation of a Ru₂(DmAniF)₃(CO₃) type compound, Ru₂(DmAniF)₃(OAc)Cl was reacted with 4 equiv of K₂CO₃ in THF in the ambient conditions for 24 h (Scheme 1). In addition to the expected K[Ru₂(DmAniF)₃(μ -O,O'-CO₃)Cl] as the major product (R_f = 0.68, MeOH-acetone (v/v, 1:5), to be reported elsewhere [42]), there is a minor and less polar product (R_f = 0.80, EtOAchexanes (v/v, 1:1)). Further column purification provided the title compound **1** in a yield about 12%. The chemical composition of **1** was established through the combination of X-ray structure determination and high resolution mass spectrometry as described in

CrossMark

Scheme 1. Synthesis of compound 1.

Section 2.2. It is worth noting that compound **1** is a persistent byproduct as well from the reaction between $\text{Ru}_2(Dm\text{AniF})_3(OAc)Cl$ and phosphate or formate [42]. The formation of **1** is peculiar as it contains four DmAniF ligands, one of which must come from a ligand disproportionation reaction of the starting compound $\text{Ru}_2(Dm\text{AniF})_3(OAc)Cl$. Furthermore, the Ru_2 core in **1** is two electrons less than that in $\text{Ru}_2(Dm\text{AniF})_3(OAc)Cl$, hinting at possible aerobic oxidation with concurrent incorporation of the bridging oxo ligand. While the high spin (S = 3/2, see below) nature prevents unambiguous NMR study, compound **1** has been characterized by elemental analysis, HR-MS, UV–vis and FT-IR techniques.

2.2. Molecular and electronic structure

Single crystals of X-ray quality were obtained through slow diffusion of hexanes into an ethyl acetate solution of 1. The molecular structure of 1 is shown in Fig. 1 and the selected bond lengths and angles are listed in Table 1. While there is a pair of trans-DmAniF ligands remaining bridging bidentate, each Ru center is also coordinated with a η^2 -chelating DmAniF ligand. The coordination sphere of diruthenium core is completed with the bridging oxo and acetate ligands, which are trans- to each other. Such a ligand arrangement, a hybrid between the classic paddlewheel and common edge-sharing bioctahedral (ESBO) motifs [43], is very rare for diruthenium compounds [1]. Prior examples of diruthenium(III, III) ESBO compounds include Ru₂(C₅NH₄NH)₆(PMe₂Ph)₂ [44], $Ru_2Cl_6(dmpm)_2$ [45], $[Ru_2(OMe)(O_2CC_6H_4-p-OMe)_3(1-MeIm)_4]^{2+}$ [46], $Ru_2(F_5ap)_4(\mu-CN)_2$ [47] and $[Ru_2(3,5-Cl_2cat)_4(OMe)_2]^{2-}$ [48], and the Ru-Ru distances therein (2.55 ± 0.06 Å) are consistent with the existence of a Ru-Ru single bond. There is also an example of diruthenium(IV,III) ESBO species, namely [Ru₂(3,5-Cl₂cat)₄ $(OMe)_2$ ¹⁻ [48], which has a Ru-Ru distance of 2.53 Å and a bond order of 1.5. The Ru1-Ru2 distance in 1 is 2.646 Å, which is indicative of bonding interaction between two Ru centers. Based

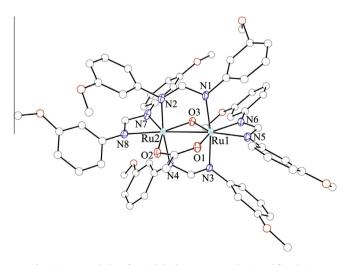


Fig. 1. Structural plot of 1 with hydrogen atoms eliminated for clarity.

Table 1	
Selected hor	lengths (Å) and angles (°) for compound 1

Selected bond lengths (A) and angles (*) for compound 1.					
Ru1-Ru2	2.6464(7)	Ru1-N6	2.111(6)		
Ru1-03	1.862(4)	Ru2-02	2.057(5)		
Ru2-03	1.863(5)	Ru2-N2	2.087(7)		
Ru1-01	2.053(5)	Ru2-N4	2.109(6)		
Ru1–N1	2.083(7)	Ru2-N7	2.101(6)		
Ru1–N3	2.118(6)	Ru2-N8	2.121(6)		
Ru1-N5	2.123(5)				
Ru1-O3-Ru2	90.5(2)	Ru2-Ru1-N1	87.39(16)		
Ru1-Ru2-O3	44.73(14)	Ru2-Ru1-N3	83.65(15)		
Ru2-Ru1-O3	44.75(15)	Ru2-Ru1-01	83.45(13)		
N5-Ru1-N6	62.5(2)	01-Ru1-N5	84.6(2)		
N7-Ru2-N8	62.1(2)	02-Ru2-N8	85.2(2)		
Ru2-Ru1-N5	167.89(18)	N1-Ru1-N3	171.0(2)		
Ru2-Ru1-N6	129.50(16)	N2-Ru2-N4	171.2(2)		
Ru1-Ru2-N7	129.06(18)	N1-Ru1-01	88.7(2)		
Ru1-Ru2-N8	168.55(19)	N2-Ru2-O2	89.3(2)		
O3-Ru1-N1	85.7(2)	N3-Ru1-01	90.0(2)		
O3-Ru1-N3	88.1(2)	N4-Ru2-O2	89.1(2)		
O3-Ru1-N6	84.9(2)	N1-Ru1-N5	94.1(2)		
03-Ru1-01	128.05(19)	N1-Ru1-N6	93.3(2)		
03-Ru2-N2	89.5(2)	N3-Ru1-N5	94.6(2)		
03-Ru2-N4	84.6(2)	N3-Ru1-N6	92.7(2)		
03-Ru2-N7	84.7(2)	N2-Ru2-N7	91.4(2)		
03-Ru2-02	128.00(19)	N2-Ru2-N8	94.0(2)		
Ru1-Ru2-N2	83.65(16)	N4-Ru2-N7	94.6(2)		
Ru1-Ru2-N4	87.56(16)	N4-Ru2-N8	94.5(2)		
Ru1-Ru2-O2	83.53(12)				

on the comparison with the aforementioned ESBO compounds, it is likely that the Ru–Ru bond order in **1** is one half. Further tale-telling evidence of bonding interaction is the Ru1–O3–Ru2 angle (90.3°), which is much smaller than the M–(μ -X)–M angles observed for ESBO species without M–M bonds [43].

Also worth commenting on is the pseudo-octahedral Ru coordination geometry in **1**, especially the presence of an η^2 -chelating DmAniF, which is rare among M₂ compounds supported by diaryl-formamidiniate and bicyclic guanidinate ligands. Literature precedents include M = Mo [49], Cr [50], Nb [51], and several examples with M = W [52–55], where the η^2 -chelating *N*,*N*-bidentate ligand is a recurring structural feature. The averaged Ru–N bond length for the bridging DmAniF in **1** is about 2.100[7] Å, which is longer than that in the parent compound Ru₂(DmAniF)₃(OAc)Cl (2.064 [5] Å) and slightly shorter than the averaged value for the η^2 -DmAniF in **1** (2.114[6] Å). The averaged Ru–O distance (1.863[5] Å) is similar to those found for other ESBO diruthenium compounds containing oxo-bridge [56–58].

As elegantly outlined in a review by Cotton [43], the metalmetal bonding configuration in an ESBO bimetallic species depends significantly on the valence electron count of the metal center. ESBO bimetallic species of d^4-d^4 and d^5-d^5 valence electron counts were predicted to have the $\sigma^2\pi^2(\delta\delta^*)^4$ and $\sigma^2\pi^2(\delta\delta^*)^4\pi^{*2}$ configurations, respectively. Hence, a $\sigma^2\pi^2(\delta\delta^*)^4\pi^*$ configuration (and a M–M bond order of 3/2) would be expected for a d^4-d^5 bimetallic species of an idealized ESBO geometry. Though compound **1** does not belong to the ESBO structural class, its electronic configuration may be derived from the abovementioned one by Download English Version:

https://daneshyari.com/en/article/1335849

Download Persian Version:

https://daneshyari.com/article/1335849

Daneshyari.com