Polyhedron 30 (2011) 3121-3126

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Exchange couplings in one-dimensionally arrayed 4f-3d heterometallic $[Ln_2Cu_2]_n$ compounds: A chemical trend of the coupling parameter

Atsushi Okazawa^a, Kei Fujiwara^b, Ryo Watanabe^b, Norimichi Kojima^a, Shunsuke Yoshii^c, Hiroyuki Nojiri^c, Takayuki Ishida^{b,*}

^a Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo 153-8902, Japan ^b Department of Engineering Science, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan ^c Institute for Materials Research and CINTS, Tohoku University, Katahira, Sendai 980-8577, Japan

ARTICLE INFO

Article history: Available online 10 March 2011

Keywords: EPR ESR Single-molecule magnet Lanthanoid Lanthanide Rare earth metal Exchange interaction

ABSTRACT

Heterometallic polymeric coordination compounds $[{Ln(hfac)_2(CH_3OH)}_2{Cu(dmg)(Hdmg)}_2]_n$ (abbreviated as $[Ln_2Cu_2]_n$) involving light lanthanoid ions, Pr, Nd, Sm, and Eu, were synthesized, where H_2 dmg and Hhfac stand for dimethylglyoxime and 1,1,1,5,5,5-hexafluoropentane-2,4-dione, respectively. The X-ray crystallographic analysis shows that their structures are isomorphous to those of the known heavy lanthanoid analogs. The exchange couplings were evaluated by high-frequency electron paramagnetic resonance and pulsed-field magnetization studies, giving ferromagnetic exchange parameters: $J_{Pr-Cu}/k_B = 0.039(1) \text{ K}$, $J_{Nd-Cu}/k_B = 0.38(1) \text{ K}$, $J_{Sm-Cu}/k_B = 0.95(2) \text{ K}$, and no interaction between Eu and Cu ions. A significant trend is found in the order of the periodic table. The ferro- and antiferromagnetic 4f–3d couplings were characterized for the light and heavy lanthanoid derivatives, respectively. The magnitude of J_{Ln-Cu} decreases with a decrease of the 4f-spin portion, i.e., the number of unpaired electrons, whether the coupling is ferro- or antiferromagnetic.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Single-molecule magnets (SMMs) exhibit magnetic hysteresis from the single-molecular origin [1]; namely, slow magnetization reversal due to a high energy-barrier. Lanthanoid ions seem suitable for development of SMMs, since the barrier is caused by strong magnetic anisotropy and large spins [2,3]. Several Dy-Cu compounds showed slow magnetization reversal and distinct hysteresis, as clarified by ac susceptibility and pulsed-field magnetization measurements [4-10]. We have investigated the exchange couplings and energy-level structures of them [4-7] by means of combined methods of high-frequency electron paramagnetic resonance (HF-EPR) [11] and pulsed-field magnetization [12]. One of the advantages of HF-EPR is the ability of precise determination of the 4f–3d exchange coupling parameter (J_{4f-3d}) owing to the high resolution and variable-frequency technique [13]. We have established a standard method to evaluate J_{4f-3d} [4–7], and a distinct chemical trend in J_{4f-3d} has been successfully characterized in the simplest dinuclear systems [14].

We have reported the HF-EPR study on heterometallic chain compounds $[{Ln(hfac)_2(MeOH)}_2{Cu(dmg)(Hdmg)}_2]_n$ having heavy lanthanoid ions (abbreviated as $[Ln_2Cu_2]_n$ hereafter; Ln = Tb, Dy, Ho, and Er; Hhfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione; H_2dmg = dimethylglyoxime) [6,7]. The energy-level crossing and quantum tunneling of magnetization were explained in terms of the well-defined Ln–Cu exchange couplings. Although they form a one-dimensional chain structure, their magnetic properties can be described in terms of SMMs rather than single-chain magnets. The J_{4f-3d} values were determined, and, the most interestingly, the magnitude of J_{4f-3d} monotonically decreased in the order of Gd, Tb, Dy, Ho, and Er [6,7,15]. We will report here the characterization of various isomorphous $[Ln_2Cu_2]_n$ complexes having light lanthanoid ions and their magnetic properties, where Ln is Pr, Nd, Sm, and Eu. Comparison of the 4f–3d exchange interactions over the entire 4f-metal ion series is of great interest. A clear relation between J_{4f-3d} and the 4f atomic number (*Z*) will be presented.

2. Results

2.1. Crystallographic study

Complexes $[Pr_2Cu_2]_n$, $[Nd_2Cu_2]_n$, $[Sm_2Cu_2]_n$, and $[Eu_2Cu_2]_n$ (for the molecular structures, see Fig. 1) were prepared according to the literature method [6,7,15] using the corresponding Ln salt as a starting material. They crystallized in a triclinic $P\bar{1}$ space group. Their molecular structures are isomorphous to each other and also to those of $[Gd_2Cu_2]_n$ [15] and heavy $[Ln_2Cu_2]_n$ [6,7]. Selected

^{*} Corresponding author. Tel.: +81 42 443 5490; fax: +81 42 443 5501. *E-mail address:* ishi@pc.uec.ac.jp (T. Ishida).

^{0277-5387/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2011.03.007

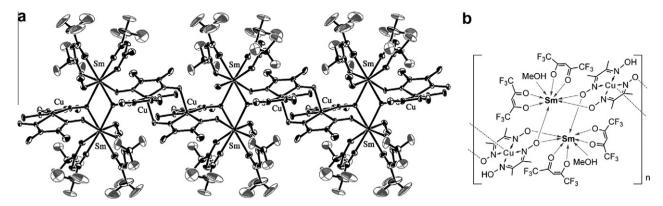


Fig. 1. (a) Crystal structure of [Sm₂Cu₂]_n with the thermal ellipsoids at the 50% probability level. Three repeating units are shown. Hydrogen atoms are omitted for clarity. (b) Structural formula of [Sm₂Cu₂]_n. Note that the Ln = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er derivatives are all isomorphous.

crystallographic parameters of the present derivatives are listed in Table 1. The lanthanoid contraction in ionic radius is clearly demonstrated; for example, the unit cell volume is monotonically shrunk from $Ln = {}_{59}Pr (V = 1552.0(17) Å^3)$ to ${}_{68}Er (V = 1509(2) Å^3)$ [7]).

Fig. 1 shows the X-ray crystal structure of $[Sm_2Cu_2]_n$ for an instance. The monomeric unit was a diamond-arrayed Sm₂Cu₂ and the symmetrical inversion center is located in the center of a diamond; a half of a diamond is crystallographically independent. There are two Sm-Cu relations. The Sm ion has a square-antiprism structure with eight oxygen atoms coordinated. The magnetic orbital of the Cu²⁺ ion is $3d_{x^2-v^2}$, which is located in the [Cu(dmg)(Hdmg)]⁻ basal plane, and accordingly the Ln-Cu exchange interaction across the diatomic O-N bridge will be appreciable. On the other hand, the interaction between the $[Ln_2Cu_2]$ units is very weak because of the out-of-plane bridging structure with the axial O...Cu coordination [6,7,15]. No appreciable interchain interaction was found, and accordingly the chains are magnetically isolated.

2.2. Magnetic study

Table 1

The pulse-field magnetization data on a polycrystalline specimen of $[Pr_2Cu_2]_n$ were collected at 0.5 K (Fig. 2a). The magnetization at 19 T was $4.4\mu_{\rm B}$ and did not show saturation, which can be

Selected crystallographic data for $[Ln_2Cu_2]_n$ (Ln = Pr, Nd, Sm, and Eu).

compared with the calculated saturation value (M_s) 6.80 μ_B with $|I^{z}| = 3$ and $g_{I} = 4/5$ for a Pr^{3+} ion. A parallel study on the same specimen using a SQUID magnetometer at 2 K supported this result. The field-oriented data were usually obtained in these measurements (see Section 5), but the M_s may not be a full-saturation value because of incomplete orientation. The slope around 19 T is partly explained by such incomplete orientation as well as a possible shift of the population distribution to the ground magnetic states with large $|I^{z}|$. This finding indicates that the M_{s} is given by $|I^{z}| = 3$ and that the contribution of the thermally populated to smaller $|I^{z}|$ states located close to that of $|J^{z}| = 3$.

In sharp contrast to the results on the heavier $[Ln_2Cu_2]_n$ (Ln = Tb, Dy, Ho, and Er), the magnetization curve of $[Pr_2Cu_2]_n$ did not show any step up to 20 T. When the specimen has a relatively weak Ln-Cu antiferromagnetic coupling, a copper spin flip is observed as a magnetization jump. There are two possible explanations for the absence of any step. One is that the specimen involves Ln-Cu ferromagnetic coupling. Another possibility is the presence of antiferromagnetic coupling with a larger coupling constant than the upper limit of the experimental window, but it is less likely, because 4f-3d interactions are usually small and detectable below 20 T.

Similarly, the pulsed-field magnetization on a polycrystalline specimen of $[Nd_2Cu_2]_n$ was measured at 0.5 K (Fig. 2a). The magnetization at 19T was $6.2\mu_{\rm B}$ and did not show saturation, in

Compounds	$[\Pr_2 Cu_2]_n$	$[Nd_2Cu_2]_n$	$[Sm_2Cu_2]_n$	$[Eu_2Cu_2]_n$
Formula	C ₁₉ H ₁₉ CuF ₁₂ N ₄ O ₉ Pr	$C_{19}H_{19}CuF_{12}N_4NdO_9$	C ₁₉ H ₁₉ CuF ₁₂ N ₄ O ₉ Sm	C19H19CuEuF12N4O9
Formula weight	879.81	883.15	889.31	890.87
Habit	brown prism	brown prism	brown prism	brown prism
Dimension (mm ³)	$0.26 \times 0.12 \times 0.07$	$0.55 \times 0.40 \times 0.08$	$0.21\times0.21\times0.11$	$0.25\times0.25\times0.10$
T (K)	90	90	90	100
Crystal system	triclinic	triclinic	triclinic	triclinic
Space group	ΡĪ	ΡĪ	ΡĪ	ΡĪ
Unit cell dimensions				
a (Å)	10.594(5)	10.582(5)	10.5915(8)	10.5801(5)
b (Å)	11.171(7)	11.177(8)	11.1239(5)	11.1315(6)
c (Å)	14.237(11)	14.238(10)	14.1921(5)	14.1870(9)
α (°)	71.84(6)	71.70(5)	71.710(6)	71.642(4)
β (°)	75.79(6)	76.10(6)	75.908(6)	75.948(3)
γ (°)	85.28(7)	85.16(6)	85.090(7)	84.955(3)
V (Å ³)	1552.0(17)	1551.9(17)	1539.77(16)	1538.22(16)
Ζ	2	2	2	2
D_{calc} (g cm ⁻³)	1.883	1.890	1.918	1.923
Unique data	6966	7041	6925	6821
μ (Mo K α) (mm ⁻¹)	2.353	2.460	2.706	2.830
$R(F)^{a}(I > 2\sigma(I))$	0.0334	0.0535	0.0518	0.0595
$R_{\rm w} (F^2)^{\rm b}$ (all data)	0.0471	0.1062	0.1046	0.1353

^a $R = \sum ||F_0| - |F_c|| / \sum |F_0|.$ ^b $Rw = [\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2]^{1/2}.$

Download English Version:

https://daneshyari.com/en/article/1335991

Download Persian Version:

https://daneshyari.com/article/1335991

Daneshyari.com