Polyhedron 92 (2015) 22-29

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Construction of 18-membered monometallic macrocycles by a *trans*-spanning ligand

Simplicio González-Montiel^{a,*}, Saray Baca-Téllez^a, Diego Martínez-Otero^b ^a Área Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, km. 4.5 Carretera Pachuca-Tulancingo, Ciudad Universitaria, C.P. 42184. Mineral de la Reforma Hidalgo. Mexico

^b Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco km. 14.5, C.P. 50200, Toluca, Estado de México, Mexico

ARTICLE INFO

Article history Received 9 November 2014 Accepted 12 February 2015 Available online 12 March 2015

Keywords: Self-assembly Disassembly process Metallomacrocycles trans-Spanning ligand Molecular structure

ABSTRACT

The metallomacrocycles **4** and **5** have been constructed by self-assembling between Pd^{II} or Pt^{II} with the polydentated ligand 1,3-bis((2-((pyridin-2-ylmethyl)thio)phenyl)thio)propane (3) and their structures were determined by IR, NMR spectroscopy, HR-MS mass spectrometry and by single-crystal X-ray diffraction analysis. The molecular structures of 4 and 5 reveal the formation of discrete 18-membered monometallic macrocycles generated by the assembly of one ligand and one metal atom. In this process ligand 3 acts in a *trans*-spanning mode via the nitrogen atoms of the pyridine rings. In a DMSO- d_6 solution the metallomacrocycles 4 and 5 experiment a disassembly process.

© 2015 Elsevier Ltd. All rights reserved.

to act as trans-spanning or cis-chelating ligands through non-covalent metal-nitrogen interactions [8,28-41]. Herein, we describe the construction of novel 18-membered

monometallic macrocycles with palladium (II) or platinum (II) as metal centers. Metallomacrocycles 4 and 5 were obtained by self-assembly between 1,3-bis((2-((2-pyridinylthio)methyl)phenyl)thio)propane (3) with PdCl₂ and PtCl₂, respectively. In this process the ligand favors a *trans*-spanning mode because the nitrogen atoms of the pyridine rings orient themselves towards the metal center. Metallomacrocycles 4 and 5 had been characterizing by IR, HR-MS spectrometry, X-ray analysis and their behavior in DMSO- d_6 solutions has been investigated by ¹H NMR spectroscopy.

2. Experimental

2.1. Materials and instrumentation

All chemicals used are commercially available and were used without further purification. Melting points were measured in a Mel-Temp II instrument and are uncorrected. Elemental analyses of the compounds were determined on a Perkin-Elmer Series II CHNS/O Analyzer. IR spectra (Perkin-Elmer 2000 FTIR) were recorded (4000-400 cm⁻¹ range) as KBr pellets. Raman spectra were obtained in a Perkin-Elmer Spectrum GX NIR FT-RAMAN spectrometer and were measured in the solid state (3600- 100 cm^{-1} range) with 10–280 mW laser power having 4.0 cm⁻¹ resolution; under these conditions metallomacrocycles 4 and 5 were

1. Introduction

Over the last years, the rational design, synthesis and construction of exotic molecules such as triangles, squares and rectangles, helicates, knots, catenanes, capsules and molecular containers have received a significant amount of attention due to their great variety of structural and potential applications in different fields such as separation catalysis, sensors, molecular electronics, ion transport, molecular recognition and drug delivery [1–6]. Construction of homo- and heterometallomacrocycles has been achieved by self-assembly between a ligand which may contain single-or multiple donor atoms (O, S, P and N atoms) and be either rigid or flexible and a transition-metal which functions as an acceptor [7–21]. Today, a great number of synthetic strategies based on self-assembly reactions are employed to synthesize metallomacrocycles; in all of them the influence of steric and electronic factors of the ligand that control different properties such as macrocycle size, macrocycle cavities and reactivity at the metal center on the self-assembly process have to be taken into account [11,22–27]. Thus, polyfunctional ligands that contain ortho-, metaor para-pyridyl substituted rings in their structure have been widely employed to construct a great variety of metallomacrocycles based on self-assembly processes due to their ability

E-mail address: gmontiel@uaeh.edu.mx (S. González-Montiel).

^{*} Corresponding author. Tel.: +52 771 71 72 000x2216; fax: +52 771 71 72 000x6502.

 Table 1

 Details of crystal data and structure refinement parameters for 4 and 5.

$\begin{array}{ccccc} \mbox{Empirical formula} & C_{56} \mbox{H}_{55} \mbox{N}_5 \mbox{S}_8 \mbox{C}_{14} \mbox{Pd}_2 & C_{56} \mbox{H}_{55} \mbox{N}_5 \mbox{S}_8 \mbox{C}_{14} \mbox{Pd}_2 & 1586.51 \\ \mbox{T} & 1409.13 & 1586.51 \\ \mbox{T} & 1586.51 & 293(2) & 293(2) \\ \mbox{Wavelength} & (\mbox{\AA}) & 1.54184 & 1.54184 \\ \mbox{Crystal size (mm)} & 0.23 \times 0.07 \times 0.03 & 0.64 \times 0.24 \times 0.14 \\ \mbox{Crystal size (mm)} & 0.23 \times 0.07 \times 0.03 & 0.64 \times 0.24 \times 0.14 \\ \mbox{Crystal system} & monoclinic & monoclinic \\ \mbox{Space group} & C2/m & C2/m \\ \mbox{a} & (\mbox{\AA}) & 15.5753(8) & 16.0747(2) \\ \mbox{b} & (\mbox{\AA}) & 15.5753(8) & 16.0747(2) \\ \mbox{b} & (\mbox{\AA}) & 11.63808(15) \\ \mbox{a} & (\mbox{``}) & 90 & 90 \\ \mbox{f} & (\mbox{``}) & 105.382(5) & 102.9518(14) \\ \mbox{y} & (\mbox{``}) & 90 & 90 \\ \mbox{f} & (\mbox{f}) & 90 & 90 \\ \mbox{f} & ($	-
T (K)293(2)293(2)Wavelength (Å)1.541841.54184Crystal size (mm) $0.23 \times 0.07 \times 0.03$ $0.64 \times 0.24 \times 0.14$ Crystal systemmonoclinicmonoclinicSpace group $C2/m$ $C2/m$ a (Å)15.5753(8)16.0747(2) b (Å)16.8796(6)17.1321(3) c (Å)11.7473(5)11.63808(15) α (°)9090 β (°)105.382(5)102.9518(14) γ (°)9090	
Wavelength (Å)1.541841.54184Crystal size (mm) $0.23 \times 0.07 \times 0.03$ $0.64 \times 0.24 \times 0.14$ Crystal systemmonoclinicmonoclinicSpace group C/m C/m a (Å)15.5753(8)16.0747(2) b (Å)16.8796(6)17.1321(3) c (Å)11.7473(5)11.63808(15) α (°)9090 β (°)105.382(5)102.9518(14) γ (°)9090	
Crystal size (mm) $0.23 \times 0.07 \times 0.03$ $0.64 \times 0.24 \times 0.14$ Crystal systemmonoclinicmonoclinicSpace group $C2/m$ $C2/m$ a (Å)15.5753(8)16.0747(2) b (Å)16.8796(6)17.1321(3) c (Å)11.7473(5)11.63808(15) α (°)9090 β (°)105.382(5)102.9518(14) γ (°)9090	
Crystal system monoclinic monoclinic Space group $C2/m$ $C2/m$ a (Å) 15.5753(8) 16.0747(2) b (Å) 16.8796(6) 17.1321(3) c (Å) 11.7473(5) 11.63808(15) α (°) 90 90 β (°) 105.382(5) 102.9518(14) γ (°) 90 90	
Space group $C2/m$ $C2/m$ a (Å) 15.5753(8) 16.0747(2) b (Å) 16.8796(6) 17.1321(3) c (Å) 11.7473(5) 11.63808(15) α (°) 90 90 β (°) 105.382(5) 102.9518(14) γ (°) 90 90	
$ \begin{array}{cccccc} a(\dot{A}) & 15.5753(8) & 16.0747(2) \\ b(\dot{A}) & 16.8796(6) & 17.1321(3) \\ c(\dot{A}) & 11.7473(5) & 11.63808(15) \\ \alpha(^{\circ}) & 90 & 90 \\ \beta(^{\circ}) & 105.382(5) & 102.9518(14) \\ \gamma(^{\circ}) & 90 & 90 \end{array} $	
b (Å) 16.8796(6) 17.1321(3) c (Å) 11.7473(5) 11.63808(15) α (°) 90 90 β (°) 105.382(5) 102.9518(14) γ (°) 90 90	
c (Å)11.7473(5)11.63808(15) α (°)9090 β (°)105.382(5)102.9518(14) γ (°)9090	
α (°) 90 90 β (°) 105.382(5) 102.9518(14) γ (°) 90 90	
β (°) 105.382(5) 102.9518(14) γ (°) 90 90	
γ (°) 90 90	
V (Å ³) 2977.8(2) 3123.51(8)	
Z 2 2	
$ \rho_{\rm calc} ({\rm mg/mm^{-3}}) $ 1.572 1.687	
μ (mm ⁻¹) 9.474 12.643	
F(000) 1428.0 1556.0	
2 <i>O</i> range for data 7.806–134.03 7.646–148.956	
collection (°)	
Index ranges $-18 \leqslant h \leqslant 18$, $-20 \leqslant h \leqslant 20$,	
$-20 \leqslant k \leqslant 19$, $-21 \leqslant k \leqslant 20$,	
$-14 \leqslant l \leqslant 14$ $-14 \leqslant l \leqslant 14$	
Absorption correction analytical analytical	
Reflections collected 9804 27772	
Unique reflections, <i>R</i> _{int} 2762, 0.0380 3309, 0.0635	
Data/restraints/ 2762/358/293 3309/362/293 parameters 3309/362/293	
Goodness-of-fit (GOF) 1.049 1.105 on F ²	
$R_1, wR_2 \ [I \ge 2\sigma(I)]$ 0.0554, 0.1539 0.0366, 0.0999	
R_1, wR_2 [all data] 0.0678, 0.1687 0.0387, 0.1026	
Largest difference in $1.10/-0.9$ $1.81/-0.79$	
peak/hole [e Å ⁻³]	

photosensitive and underwent photodecomposition. Mass spectrometric measurements were recorded on a HR-LC 1100/MSD TOF Agilent Technology in positive-ion mode by direct insertion and simulations were performed with IsoPro 3.1 Software [42]. A Varian Inova 400 NMR spectrometer was used to record ¹H NMR and ¹³C{¹H} NMR spectra at 20 °C, in CDCl₃ or, where necessary, in DMSO- d_6 ; ¹H, 399.78 MHz and residual protio-solvent signal was utilized as reference. PdCl₂ and PtCl₂, HBr, 2-mercaptopyridine and Cs₂CO₃, were obtained from Sigma–Aldrich and were used as received, 1,3-bis-(2-hydroxymethylphenylthio)propane (**1**) was prepared as previously described [43].

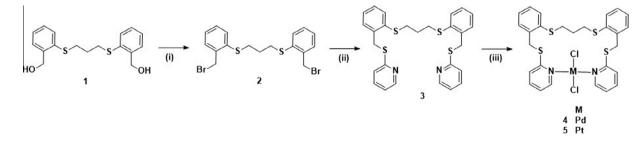
2.2. Synthesis of compound 2 and ligand 3

2.2.1. Synthesis of 1,3-bis((2-(bromomethyl)phenyl)thio)propane (2)

1,3-Bis-(2-hydroxymethylphenylthio)propane (15.6 mmol, 5 g) was dissolved in 50 mL of toluene and hydrobromic acid, 48% (50 mL) was added; the mixture was refluxed for 5 days. The two phases were then separated and the organic phase was dried with

NaSO₄ then filtered through a bed of Celite. The solvent was removed under reduced pressure to give a white solid. Yield: 6.50 g (93%). m.p. = 70 °C. $C_{17}H_{18}Br_2S_2$ (446.26): Calc. C, 45.76; H, 4.07. Found: C, 45.44; H, 3.99%. ¹H NMR (CDCl₃): δ = 7.38 (2H, dd, ³*J* = 7.50 Hz, ⁴*J* = 1.70 Hz, H1), 7.36 (2H, dd, ³*J* = 7.50 Hz, ⁴*J* = 1.70 Hz, H1), 7.36 (2H, dd, ³*J* = 7.50 Hz, ⁴*J* = 1.70 Hz, H4), 7.25 (2H, ddd, ³*J* = 7.50 Hz, ⁴*J* = 1.70 Hz, H3), 7.19 (2H, ddd, ³*J* = 7.50 Hz, ⁴*J* = 1.70 Hz, H2), 4.68 (4H, s, H7), 3.12 (4H, t, ³*J* = 7.00 Hz, H8,), 2.00 (2H, q, ³*J* = 7.00 Hz, H9) ppm. ¹³C NMR (CDCl₃): δ 137.9 (C6), 136.2 (C5), 130.9 (C4), 130.4 (C1), 129.4 (C2), 126.9 (C3), 32.9 (C8), 32.2 (C7), 28.2 (C9) ppm. IR (KBr): 3058, 2960, 2922, 2851, 1588, 1567, 1467, 1442, 1218, 1199, 1064, 1040, 819, 756, 730, 682, 605, 596, 495, 446 cm⁻¹.

2.2.2. Synthesis of 1,3-bis((2-((2-pyridinylthio)methyl)phenyl)thio) propane (**3**)


1,3-Bis((2-(bromomethyl)phenyl)thio)propane (11.20 mmol, 5.0 g) and 2-mercaptopyridine (22.40 mmol, 2.50 g) were dissolved in 50 mL toluene, and then Cs₂CO₃ (11.20 mmol, 3.65 g) was added directly into the solution; the mixture was then refluxed for 16 h. After cooling, the resulting suspension was then filtered through Celite. The solvent was removed under reduced pressure to give a yellow oil. Yield 5.10 g (90%). C₂₇H₂₆N₂S₂ (506.76): Calc. C, 63.99; H, 5.17. Found: C. 63.20; H, 5.05%. ¹H NMR (DMSO- d_6): $\delta = 8.46$ (2H, ddd, ${}^{3}J = 4.90$ Hz, ${}^{4}J = 1.85$ Hz, ${}^{5}J = 0.95$ Hz, H14), 7.61 (2H, ddd, ${}^{3}J = 8.10$ Hz, ${}^{4}J = 1.74$ Hz, ${}^{5}J$ = 0.90 Hz, H11), 7.43 (2H, dd, ${}^{3}J$ = 7.56 Hz, ${}^{4}J$ = 1.48 Hz, H1), 7.36 (2H, dd, ${}^{3}J$ = 7.84 Hz, ${}^{4}J$ = 1.10 Hz, H4), 7.25 (2H, ddd, ${}^{3}J = 8.10 \text{ Hz}, {}^{4}J = 1.74 \text{ Hz}, {}^{5}J = 0.90 \text{ Hz}, \text{ H1}), 7.20 (2H, ddd, {}^{3}J = 7.61 \text{ Hz}, {}^{4}J = 1.57 \text{ Hz}, \text{ H3}), 7.12 (2H, ddd, {}^{3}J = 7.38 \text{ Hz}, {}^{4}J = 1.27 \text{ Hz}, \text{ H2}), 7.10 (2H, ddd, {}^{3}J = 3.68 \text{ Hz}, {}^{4}J = 1.02 \text{ Hz}, \text{ H1}), 4.50 (4H, s, H7), 3.11 (4H, t, {}^{3}J = 7.13 \text{ Hz}, \text{ H8}), 1.84 (2H, q, {}^{2}J = 7.13 \text{ Hz}, \text{ H8}), 1.84 (2H, q, {}^{2}J = 7.13 \text{ Hz}, \text{ H8}), 1.84 (2H, q, {}^{2}J = 7.13 \text{ Hz}, \text{ H8}), 1.84 (2H, q, {}^{2}J = 7.13 \text{ Hz}, \text{ H8}), 1.84 (2H, q, {}^{2}J = 7.13 \text{ Hz}, \text{ H8}), 1.84 (2H, q, {}^{2}J = 7.13 \text{ Hz}, \text{ H8}), 1.84 (2H, q, {}^{2}J = 7.13 \text{ Hz}, \text{ H8}), 1.84 (2H, q, {}^{2}J = 7.13 \text{ Hz}, \text{ H8}), 1.84 (2H, q, {}^{2}J = 7.13 \text{ Hz}, \text{ H8}), 1.84 (2H, q, {}^{2}J = 7.13 \text{ Hz}, \text{ H8}), 1.84 (2H, q, {}^{2}J = 7.13 \text{ Hz}, \text{ H8}), 1.84 (2H, q, {}^{2}J = 7.13 \text{ Hz}, \text{ H8}), 1.84 (2H, q, {}^{2}J = 7.13 \text{ Hz}, \text{ H8}), 1.84 (2H, q, {}^{2}J = 7.13 \text{ Hz}, \text{ H8}), 1.84 (2H, q, {}^{2}J = 7.13 \text{ Hz}, \text{H8}), 1.84 (2$ ^{3}J = 7.13 Hz, H9) ppm. 13 C NMR (DMSO-_{d6}): δ = 157.9 (C10), 149.4 (C14), 136.8 (C), 136.7 (C12), 135.5 (C6), 130.2 (C1), 128.7 (C4), 128.1 (C3), 125.9 (C2), 121.7 (C11), 120.0 (C13), 31.9 (C7), 31.4 (C8), 27.9 (C9). IR (KBr): 3055, 2993, 2953, 2924, 2848, 1578, 1467, 1450, 1411, 1279, 1246, 1144, 1125, 1062, 1046, 980, 756, 736, 720, 615, 575, 476 cm⁻¹.

2.3. Synthesis of the metallomacrocycles 4 and 5

Metallomacrocycles **4** and **5** were synthesized according to the following general method: A mixture of the corresponding metal dichloride in 50 mL of hot acetonitrile was refluxed until the metal salt was dissolved, then the reaction mixture was allowed to cool to room temperature and ligand **3** was added. The mixture was refluxed for 16 h. At the end, the suspension was filtered whilst hot. Finally, the solid filtered was washed with one portion of 20 mL of cold acetonitrile.

2.3.1. Synthesis of the metallomacrocycle 4

Compound **4** was prepared from $PdCl_2$ (1.13 mmol, 200 mg) and 1,3-bis((2-((2-pyridinylthio)methyl)phenyl)thio)propane (**3**) (1.13 mmol, 570 mg,) according to the procedure described above

Scheme 1. Synthetic route established for preparation of ligand 3 and metallomacrocycles 4 and 5. (i) HBr, toluene, reflux, 5 days; (ii) 2-mercaptopyridine, Cs₂CO₃, toluene, reflux, 16 h; (iii) PdCl₂ or PtCl₂, acetonitrile, reflux, 16 h.

Download English Version:

https://daneshyari.com/en/article/1336048

Download Persian Version:

https://daneshyari.com/article/1336048

Daneshyari.com