Polyhedron 83 (2014) 16-23

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Synthesis, structure and terahertz spectra of six Ag(I) complexes of bis(diphenylphosphino)methane with 4,4'-bipyridine and its derivations

Qi-Ming Qiu^a, Xu Huang^a, Yin-Hua Zhao^a, Min Liu^b, Qiong-Hua Jin^{a,*}, Zhong-Feng Li^a, Zhen-Wei Zhang^c, Cun-Lin Zhang^c, Qing-Xuan Meng^d

^a Department of Chemistry, Capital Normal University, Beijing 100048, China

^b The College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022, China

^c Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics,

Capital Normal University, Beijing 100048, China

^d Daxing High School Attached to CNU, Beijing 102600, China

ARTICLE INFO

Article history: Received 26 November 2013 Accepted 22 March 2014 Available online 1 April 2014

Keywords: Silver(1) complexes Bis(diphenylphosphino)methane 4.4'-Bipyridine and its derivations Terahertz time-domain spectroscopy Crystal structure

ABSTRACT

The reactions of silver salts AgX [X = OTf (OTf = CF₃SO₃), ClO₄ and BF₄] and bis(diphenylphosphino) methane (dppm) with 4,4'-bipyridine (bipy) and its derivations [1,2-di(4-pyridyl)ethane (dpa), 1,2-di(4-pyridyl)ethylene (dpe), 1,3-bis(4-pyridyl)propane (bpp)] lead to six silver(I) complexes: {[Ag₂(dppm)₂ (OTf)]₂(μ -bipy)}(OTf)₂·2CH₃OH (1), {[Ag₂(dppm)₂(μ -bpp)(OTf)](OTf)·CH₃OH)_n (2), {[Ag₂(dppm)₂(CH₃CN)]₂(μ -dpa)}(ClO₄)₄·2CH₃CN (3), [Ag₂(dppm)₃](ClO₄)₂ (4), {[Ag₂(dppm)₂(μ -bipy)(CH₃CN)](BF₄)₂)_n (5) and {[Ag₂(dppm)₂](μ -dpa)(CH₃CN)](BF₄)₂)_n (6). Complexes 1 and 3 are tetranuclear complexes with two eight-membered Ag₂P₄C₂ rings bridged by bipy and dpa respectively. 2, 5 and 6 are of infinite chain structures formed by [Ag₂(dppm)₂] units linked by bpp, bipy and dpe respectively. 4 is a binuclear compound with two silver atoms bridged by three dppm ligands. All complexes are characterized by X-ray diffraction, fluorescence, ¹H and ³¹P NMR spectroscopy and terahertz time-domain spectroscopy (THz-TDS).

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Coordination polymers are metal-ligand compounds that extend "infinitely" in one, two or three dimensions via more or less covalent metal-ligand bonding [1]. The interaction between bidentate diphosphines $R_2P(R')_nPR_2$ and silver salts has recently attracted a great deal of interest because the resulted complexes have found applications in homogeneous catalysis [2] and antitumor compounds [3]. Dppm complexes containing structure unit $[M_2(dppm)_2]$ have been intensively investigated [4,5]. Meanwhile among various types of spacing ligands, the flexible N-donor ligands are widely used in the construction of novel supramolecular frameworks including diverse noncovalent interactions [6], and they exhibit special adaptability for coordination requirements [7]. So far, a large range of infinite frameworks, including honeycomb, diamond, square grids, ladder, brick, octahedral and T-shaped have been generated [8,9]. The metal-organic hybrid supramolecular compounds have been widely used in many fields, such as catalysis [10], magnetism [11], gas separation materials [12] and nanomaterial precursors [13]. In our former work, we have obtained $[Ag_4(\mu-dppm)_2(\mu-SO_4)_2(\mu-bipy)_2] \cdot 2CH_3OH$ [14] and $\{[Cu_2(dppm)_2(bipy)(CF_3SO_3)](CF_3SO_3)(CH_3OH)\}_n$ [15]. In this paper, versatile coordinated N-donor ligands are specially chosen to obtain the frameworks of d¹⁰ metal-dppm complexes. In addition, low-valent metal complexes are difficult to be obtained in pure water solution. So the people consider the solvent CH₃CN which contains $-C \equiv N$ organic group and the solvent CH₃OH which is the simplest amphiphile which contains hydrophobic $(-CH_3)$ group and hydrophilic (-OH) group [16]. These two solvents not only adjust the weak solubility of the reactant Ag(I) salts effectively but also coordinate with the metal ion. Six novel complexes 1-6 have been isolated and characterized by single crystal X-ray diffraction, fluorescence, ¹H and ³¹P NMR spectroscopy and terahertz time-domain spectroscopy (THz-TDS).

THz-TDS is a vibrational spectroscopic technique that probes the infrared active vibrational modes in the far-infrared and submillimeter region of the electromagnetic spectrum using ultrashort pulses of coherent terahertz radiation (0.1–4.0 THz). Furthermore, the THz spectrum in the measurement range can offer new

CrossMark

^{*} Corresponding author. Tel.: +86 010 68903033; fax: +86 010 68902320. *E-mail address:* jinqh@cnu.edu.cn (Q.-H. Jin).

information about the skeletal vibration. The THz spectrum can only be measured for polar molecule. It enables the characterization of solid-state materials through the excitation of soft intramolecular vibrational modes as well as intermolecular modes and hydrogen-bonding networks inherent to the molecular assembly in the solid state [17].

Very recently, a series of new Cu(I)–PPh₃ complexes of mercaptan ligands were characterized by THz-TDS. The results show that the difference of anion can affect the THz spectra of compounds, and THz-TDS may be a sensitive strategy to determine some of the inorganic–organic hybride complexes, especially those isostructural complexes which are difficult to identify by other spectroscopy [18]. To continue our study, in this work, the THz spectra of complexes **1–6**, AgOTf, AgClO₄, AgBF₄ and relative ligands are first measured. The obtained data can possibly provide new information which can be used in many fields, such as biological and clinical applications [19], pharmaceutical [20], electronic [21], photonic [22] materials.

2. Experimental

2.1. Materials and measurements

All chemical reagents are commercially available and used without furthermore treatment. All the chemicals were purchased from 'Jinan Camolai Trading Company'. FT-IR spectra (KBr pellets, 4000–400 cm⁻¹) were measured on a Perkin-Elmer Infrared spectrometer. Elemental analyses (C, H, N) were determined on Elementar Vario MICRO CUBE (Germany) elemental analyzer. Room-temperature fluorescence spectra were measured on F-4500 FL Spectrophotometer. ¹H NMR was recorded at room temperature with a Varian VNMRS 600 MHz spectrometer and ³¹P NMR was recorded at room temperature with a Bruker DPX 162 MHz spectrometer. The THz absorption spectra were recorded on the THz time domain device of Capital Normal University of China, based

Table 1

Crystallographic data for complexes 1–6.

on photoconductive switches for generation and electro-optical crystal detection of the far-infrared light. The preparation of the samples is by pressing the pure crystals into powder and detected at N_2 atmosphere to avoid the influence of water vapor. The thickness of the samples complexes **1–6** and ligands are about 1 mm.

2.2. Preparation of the complexes

2.2.1. Synthesis of $\{[Ag_2(dppm)_2(OTf)]_2(\mu-bipy)\}(OTf)_2 \cdot 2CH_3OH(1)$

AgCF₃SO₃ (0.4 mmol, 0.1028 g) was dissolved in the mixture of CH₂Cl₂ (5 mL) and MeOH (5 mL), adding dppm (0.4 mmol, 0.1538 g) and bipy-2H₂O (0.1 mmol. 0.0192 g) into the reaction flask later. The soloution was stirred for 6 h at room temperature in the dark. The filtrate was then washed with water and CH₂Cl₂. Subsequent slow evaporation of the filtrate resulted in the formation of colorless and transparent crystals of the title complex. The crystals were washed by ether. Yield: 0.13 g, 47%. Anal. Calc. for C₁₁₆H₁₀₄Ag₄F₁₂N₂O₁₄P₈S₄: C, 49.97; H, 3.76; N, 1.01. Found: C, 49.83: H, 3.79; N, 1.04%. IR(cm⁻¹, KBr pellets): 2948w, 2025w, 1595m, 1437s, 1275s, 1224s, 1156s, 1027s, 999m, 742s, 692s, 637s, 573m, 471w. ¹H NMR (600 MHz, CDCl₃, 298 K): δ = 3.9 (br, 8H, dppm-CH₂), 7.0–7.5 (m, overlapping with the solvent signal, dppm-Ph + bipy-H), 8.6 (d, 4H, bipy-H) ppm. ³¹P NMR (162 MHz, CDCl₃, 298 K): δ = 8.7–11.9 (d, ¹J(¹⁰⁹Ag–³¹P) = 518 Hz), –1.0 to 1.9 $(d, {}^{1}J({}^{107}Ag-{}^{31}P) = 470 \text{ Hz}) \text{ ppm}, \gamma({}^{109}Ag)/\gamma({}^{107}Ag) = 1.10.$

2.2.2. Synthesis of $\{[Ag_2(dppm)_2(\mu-bpp)(OTf)](OTf) \cdot CH_3OH\}_n$ (2)

Complex **2** has been prepared following a procedure similar to that for **1** by adding dppm (0.2 mmol, 0.0769 g) and bpp (0.1 mmol, 0.0198 g) into the mixture of CH_2CI_2 (5 mL) and MeOH (5 mL) of AgCF₃SO₃ (0.2 mmol, 0.0514 g). After slow evaporation of the filtrate at ambient temperature for 6 days, colorless and transparent crystals of the title complex were obtained. The crystals were washed by ether. Yield: 0.074 g, 49%. *Anal.* Calc. for $C_{66}H_{62}Ag_2F_6N_2$ $O_7P_4S_2$: C, 52.39; H, 4.13; N, 1.85. Found: C, 52.38; H, 4.14; N,

Complex	1	2	3	4	5	6
Formula Formula weight	$\begin{array}{c} C_{116}H_{104}Ag_{4}F_{12}N_{2}O_{14}P_{8}S_{4}\\ 2785.50 \end{array}$	$\begin{array}{l} C_{66}H_{62}Ag_2F_6N_2O_7P_4S_2\\ 1512.92 \end{array}$	$\begin{array}{c} C_{120}H_{112}Ag_4Cl_4N_6O_{16}P_8\\ 2715.20 \end{array}$	C ₇₅ H ₆₆ Ag ₂ Cl ₂ O ₈ P ₆ 1567.74	$C_{62}H_{55}Ag_2B_2F_8N_3P_4$ 1355.83	C ₆₄ H ₅₇ Ag ₂ B ₂ F ₈ N ₃ P ₄ 1381.37
T (K)	298(2)	298(2)	298(2)	298(2)	298(2)	298(2)
Crystal system	monoclinic	monoclinic	triclinic	tetragonal	triclinic	triclinic
Space group	P2/c	Cm	Р	P41212	Р	Р
Crystal size (mm)	$0.50 \times 0.40 \times 0.28$	$0.48 \times 0.40 \times 0.37$	$0.40\times0.37\times0.25$	$0.45 \times 0.39 \times 0.30$	$0.49 \times 0.45 \times 0.26$	$0.37 \times 0.20 \times 0.16$
a (Å)	22.096(2)	19.375(2)	11.153(1)	20.926 (2)	11.103(1)	11.211(1)
b (Å)	15.508(1)	18.358(2)	13.793(2)	20.926 (2)	15.490(1)	14.902 (1)
<i>c</i> (Å)	18.308(2)	10.730(1)	21.427(2)	33.857(3)	18.705(2)	18.698(1)
α (°)	90	90	93.9(1)	90	92.5 (1)	86.8(10)
β (°)	105.6(1)	117.9(1)	99.8(1)	90	95.5(1)	87.1(1)
γ (°)	90	90	110.9(1)	90	110.8(1)	85.6 (1)
V (Å ³)	6041.8(10)	3373.6(5)	3003.6(6)	14826(2)	2983.6(6)	3106.4(5)
Ζ	2	2	1	8	2	2
D_{calc} (Mg/m ³)	1.531	1.489	1.501	1.405	1.509	1.477
θ Range (°)	25.02	25.01	25.02	25.02	25.02	25.02
F(000)	2812	1536	1378	6384	1372	1396
Data/restraint/ parameters	10654/0/760	4621/0/438	10464/0/779	13101/0/839	10383/0/797	10813/0/749
Reflections collected	30009	8483	15210	74755	15080	15677
Goodness-of-fit (GOF) on F ²	1.097	1.071	1.044	1.110	1.047	1.012
R _{int}	0.0532	0.0340	0.0294	0.0925	0.0343	0.0345
$R_1[I>2\sigma(I)]^a$	0.0545	0.0367	0.0416	0.0868	0.0448	0.0524
$wR_2[I>2\sigma(I)]^b$	0.1372	0.0936	0.0904	0.2270	0.0956	0.1200
$R_1(\text{all data})^a$	0.1113	0.0472	0.0776	0.1216	0.0835	0.0951
$wR_2(all data)^b$	0.1884	0.1050	0.1155	0.2622	0.1218	0.1488

^a $R = \sum (||F_0| - |F_c||) / \sum |F_o|.$

^b $wR = [\sum w(|F_0|^2 - |\overline{F_c}|^2)^2 / \sum w(F_0^2)]^{1/2}.$

Download English Version:

https://daneshyari.com/en/article/1336393

Download Persian Version:

https://daneshyari.com/article/1336393

Daneshyari.com