Polyhedron 77 (2014) 1-9

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Investigation of the structural properties of 2-naphthylamine substituted cyclotetraphosphazenes

Department of Chemistry, Gebze Institute of Technology, Gebze 41400, Kocaeli, Turkey

ARTICLE INFO

Article history: Received 10 February 2014 Accepted 30 March 2014 Available online 13 April 2014

Keywords: Octachlorocyclotetraphosphazene Tetramer 2-Naphthylamine ³¹P NMR spectroscopy X-ray crystallography

ABSTRACT

In the present study, 2-naphthylamine substituted cyclotetraphosphazenes were synthesized and characterized for the first time. The reaction of octachlorocyclotetraphosphazene (1) with 2-naphthylamine (2) was performed in a THF solution and gave eight products (3–10). All the 2-naphthylamine substituted cyclotetraphosphazene compounds (3–10) were fully characterized by elemental analysis, MALDI-TOF mass spectrometry, ¹H, ¹³C and ³¹P NMR spectroscopies. The molecular structure of the non-geminal bis-substituted 2-naphthylamine cyclotetraphosphazene compound 3 (2-*trans*-6) was also determined by X-ray crystallography. Compounds 3, 4 and 8 could be formed by an S_N2 mechanism. Compounds 5–7, 9 and 10 might be formed by both S_N1 and S_N2 reaction mechanisms. These mechanisms were supported by ³¹P NMR and X-ray crystallography results.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cyclophosphazenes as a type of phosphazene compound are an important family of inorganic heterocyclic rings with a large variation in ring size. The six membered hexachlorocyclotriphosphazene (trimer) and eight membered octachlorocyclotetraphosphazene (N₄P₄Cl₈, **1**, tetramer) have been investigated in terms of (a) nucle-ophilic substitution reactions at phosphorus, (b) ring-opening polymerization to linear polymers and (c) utility as a support for building multisite coordination ligands [1–6]. Substitution reactions of the reactive P–Cl bonds on the phosphazene group have been shown to create cyclophosphazene compounds that have several applications. For example, cyclophosphazenes could form a base from which to synthesize a variety of compounds that can be utilized as biomedical materials, anticancer and antimicrobial agents [7–11], liquid crystals [12–14] and organic light emitting diodes [15–18].

While the reactions of the trimer with aromatic amines have been studied in detail by researchers [19–24], studies on tetramer with aromatic amines are rather limited [25,26], mainly because of the much larger number of products, their low yields and consequent difficulty in structure determination [27–29]. Additionally, the reactions of primary amines with the trimer lead to the formation of geminal structures, whereas the reactions of tetramer with primary amines proceed via a non-geminal path for the replacement of chlorine atoms [1,6]. Geminal and non-geminal reactions take place concurrently and competitively via separate reaction mechanisms. The mechanism for the non-geminal substitution is associative (S_N 2), while the geminal reaction appears to involve a rate determining ionization step prior to attack by the nucleophile (S_N 1) [18,30].

Naphthylamine is an important industrial material and is used as a chemical intermediate for certain dyes, rubber and in the synthesis of a large number of chemicals, such as certain herbicides [31,32]. Naphthylamine and its derivatives have also attracted the attention of researchers due to their fluorescent properties [26]. Although the reactions of naphthylamine with various ligands have been studied [31–33], there is only one study regarding the synthesis of a 1-naphthylamino substituted cyclotetraphosphazene compound [26]. To the best of our knowledge, there is no report on the reactions of 2-naphthylamine with cyclophosphazenes so far.

In this work, 2-naphthylamine substituted cyclotetraphosphazenes were synthesized by the reactions of 2-naphthylamine with tetramer in THF using triethylamine as a base. Newly synthesized compounds (**3–10**), which are the first examples of 2-naphthylamine substituted cyclotetraphosphazenes, were obtained in the current study (Scheme 1). These compounds have been fully characterized by MALDI-TOF mass spectrometry, ¹H, ¹³C and ³¹P NMR spectroscopies, elemental analysis and X-ray crystallography (**3**).

POLYHEDRON

^{*} Corresponding author. Tel.: +90 262 6053011; fax: +90 262 6053101. *E-mail address:* yenilmez@gyte.edu.tr (G.Y. Çiftçi).

Table 1	
${}^{31}P \{{}^{1}H\}$	NMR parameters for compounds 3–10 .

Comp.	np. δ (³¹ P NMR) (ppm)							Spin	² <i>J</i> (PP) (Hz)								
_	A	A′	В	Β′	С	C′	Х	system	$^{2}J_{AX}$	$^{2}J_{AB}$	$^{2}J_{AA'}$	$^{2}J_{AB'}$	$^{2}J_{BB'}$	$^{2}J_{BC}$	$^{2}J_{\mathrm{BC}^{\prime}}$	$^{2}J_{A^{\prime}C}$	² J _{AC}
(3) ^a	-2.79 (PCl ₂)	-	-	-	-	-	-12.11 (PClR)	A_2X_2	39.85	-	-	-	-	-	-	-	-
(4) ^a	-5.65 (PCl ₂)	-5.65 (PCl ₂)	-8.57 (PClR)	-8.57 (PClR)	-	-	-	AA'BB'	-	37.92	13.83	-	13.90	-	-	-	-
(5) ^a	-4.38 (PCl ₂)	-6.82 (PCl ₂)	-9.41 (PR ₂)	-	-13.79 (PClR)	-	-	AA'BC	-	37.51	30.71	-	-	43.89	-	38.21	-
(6) ^a	-3.76 (PCl ₂)	-	-10.31 (PR ₂)	-	-16.82 (PClR)	-	-	A ₂ BC	-	36.83	-	-	-	-	-	-	38.45
(7) ^a	-3.89 (PCl ₂)	-	-5.40 (PR ₂)	-	-8.63 (PClR)	-8.63 (PClR)	-	ABCC'	-	-	-	-	-	47.77	50.96	-	37.88
(8) ^b	-6.71 (PCIR)	-	-	-	-	-	-	A ₄	-	-	-	-	-	-	-	-	-
(9) ^a	-3.15 (PCl ₂)	-	-4.58 (PR ₂)	-7.40 (PR ₂)	-13.96 (PClR)	-	-	ABB'C	-	-	-	35.22	48.53	51.50	-	-	38.56
(10) ^a	-8.43 (PR ₂)	-	-	-	-	-	-	A ₄	-	-	-	-	-	-	-	-	-

^a 202.38 MHz ³¹P NMR chemical shifts (ppm) in CDCl₃.
^b 202.38 MHz ³¹P NMR chemical shifts (ppm) in THF-d8.

Download English Version:

https://daneshyari.com/en/article/1336516

Download Persian Version:

https://daneshyari.com/article/1336516

Daneshyari.com