Discrete systems and two-dimensional coordination polymers containing potentially multidentate and bridging inorganic anions: Observation of a new type of two-dimensional topology

Arpita Biswas ${ }^{\text {a }}$, Arpita Jana ${ }^{\text {a }}$, Sohini Sarkar ${ }^{\text {a }}$, Hazel A. Sparkes ${ }^{\text {b,c }}$, Judith A.K. Howard ${ }^{\text {b }}$, Núria Aliaga-Alcalde ${ }^{\mathrm{d}, *}$, Sasankasekhar Mohanta ${ }^{\mathrm{a}, *}$
${ }^{\text {a }}$ Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
${ }^{\mathrm{b}}$ Department of Chemistry, University of Durham, University Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
${ }^{\text {c ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom }}$
${ }^{\text {d }}$ ICREA - Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain

A R T I C L E I N F O

Article history:

Received 9 December 2013
Accepted 24 February 2014
Available online 4 March 2014

Keywords:

Coordination polymer
Bridging ligand
Cyanometalates
Magnetic properties
Diamine
Two-dimensional

Abstract

The work in this report deals with seven compounds of composition $\left\{\left[\mathrm{Cu}^{\mathrm{II}}(\mathrm{dmpn})_{2}\right]_{3}\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{CN})_{6}\right]_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ (1), $\left\{\left[\mathrm{Cu}^{\mathrm{II}}(\mathrm{dmpn})_{2}\right]_{3}\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{CN})_{6}\right]_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{2}),\left\{\left[\mathrm{Cu}^{\mathrm{II}}(\mathrm{dmpn})_{2}\right]_{3}\left[\mathrm{Cr}^{\mathrm{III}}(\mathrm{CN})_{6}\right]_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{3}),\left\{\left[\mathrm{Cu}^{\mathrm{II}}(\mathrm{dmpn})\right]\left[\mathrm{Ni}^{\mathrm{II}}\right.\right.$ $\left.\left.\left.(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{4}),\left[\left\{\mathrm{Cu}^{\mathrm{II}}(\mathrm{dmpn})_{2} \mathrm{Cl}\right\}\left\{\mathrm{Cu}^{\mathrm{II}}(\mathrm{dmpn})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}\right]\left[\mathrm{Ag}^{1}(\mathrm{CN})_{2}\right] \mathrm{Cl}_{2} \quad(5),\left[(\mathrm{Cu} \text { (dmpn })_{2} \text { (dicyanamide) }\right)_{2}\right]$ (6) and $\left[\left(\mathrm{Ni}^{\mathrm{II}}(\mathrm{dmpn})_{2} \text { (dicyanamide }\right)_{2}\right]$ (7), where dmpn $=2,2$-dimethyl-1,3-diaminopropane. Syntheses, characterization and crystal structures of 1-7 along with variable-temperature ($2-300 \mathrm{~K}$) magnetic properties of 1 and $\mathbf{3}$ are described. Compounds $\mathbf{1 - 4}$ are cyanide-bridged two-dimensional coordination polymers. Twelve metal-membered ring is formed in 1-3, while both four and eight metal-membered rings are formed in $\mathbf{4}$. On the other hand, dicyanoargentate(I) in $\mathbf{5}$ is noncoordinated and dicyanamide in $\mathbf{6}$ and 7 behaves as monodentate terminal ligand. The coordination polymers in $\mathbf{1 - 4}$ and the discrete systems in 5-7 are self-assembled by hydrogen bonding interactions to generate overall three-dimensional supramolecular topologies. A novel structural aspect, two-dimensional network containing both four and eight metal-membered rings, has been observed in the copper(II)-tetracyanonickelate(II) compound 4. Magnetic studies reveal ferromagnetic interaction between $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Cr}^{\mathrm{III}}$ in 3. In addition, spin-orbit coupling of low-spin $\mathrm{Fe}^{\text {III }}$ or weak antiferromagnetic interaction along with intermolecular antiferromagnetic interactions which exist between $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Fe}^{\mathrm{III}}$ are present in 1.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Inorganic ions such as azide $\left(\mathrm{N}_{3}^{-}\right)$, dicyanamide $\left(\left[\mathrm{N}(\mathrm{CN})_{2}\right]^{-}\right.$), dicyanoargentate(I) $\left(\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}\right)$, tetracyanonickelate(II) $\left(\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}\right)$, hexacyanometalate(III) $\left(\left[\mathrm{M}(\mathrm{CN})_{6}\right]^{3-}, \mathrm{M}=\mathrm{Fe}, \mathrm{Cr}, \mathrm{Co}, \mathrm{Mn}\right)$ and hexacyanoferrate(II) $\left(\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}\right)$ have been widely utilized in coordination chemistry. In some systems, they behave as noncoordinating anions [1-11], while in some other systems, they behave as monodentate terminal ligands [12-15]. There is also the potential for them to act as bridging ligands in various ways. For example: possible bridging modes of azide are $\mu_{1,1^{-}}$[16-18], $\mu_{1,3^{-}}[16,19]$, $\mu_{1,1,1^{-}}$[20], $\mu_{1,1,3^{-}}$[21,22], $\mu_{1,1,1,1^{-}}$[23], and $\mu_{1,1,3,3^{-}}$[24]; possible bridging modes of dicyanamide are $\mu_{1,5^{-}}[3,25,26], \mu_{1,3^{-}}[3,27]$, $\mu_{1,1,5^{-}}[3,28], \mu_{1,3,5^{-}}[3,29], \mu_{1,1,3,5^{-}}[3,30]$ and $\mu_{1,1,3,5,5^{-}}$[3,31]; only

[^0]possible bridging mode of $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$involves both the cyanide groups $[7,8,13,32]$. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ can coordinate with metal ions through two [33-36], three [37,38] or all the four [32,39-42] cyanide groups; $\left[\mathrm{M}(\mathrm{CN})_{6}\right]^{3-/ 4-}$ has been found to coordinate with metal ions through two [43-50], three [43,51-56], four [43,57-60] or six [43,61-66] cyanide moieties. With these anionic/terminal/bridging moieties, several discrete or polymeric coordination compounds have been reported. Some of such systems occupied a dominating position in molecular magnetism as well [$5,16-19,22,43,49,52,55,59,60]$. It is also known that the noncoordinating nitrogen atoms of the above mentioned bridging ligands can act as hydrogen bond acceptor to generate self-assemblies [4-10].

We have noted that there is no reported example containing 2,2-dimethyl-1,3-diaminopropane (dmpn) as the blocking ligand and dicyanamide/dicyanoargentate(I)/tetracyanonickelate(II)/hexacyanoferrate(III)/hexacyanocobaltate(III)/hexacyanochromate(III) as inorganic anion/ligand and the main focus of this investigation is to explore this aspect with the expectation to get new coordination
network. Accordingly, we have attempted to isolate copper(II)/ nickel(II) systems containing 2,2-dimethyl-1,3-diaminopropane (will be abbreviated hereafter as dmpn) and dicyanamide/dicyano-argentate(I)/tetracyanonickelate(II)/hexacyanoferrate(III)/hexacyanocobaltate(III)/hexacyanochromate(III), and have been able to isolate six copper(II) and one nickel(II) complex. The compositions of the isolated seven compounds are $\left\{\left[\mathrm{Cu}(\mathrm{dmpn})_{2}\right]_{3}\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{CN})_{6}\right]_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ (1), $\left\{\left[\mathrm{Cu}^{\mathrm{II}}(\mathrm{dmpn})_{2}\right]_{3}\left[\mathrm{Co}^{\text {III }}(\mathrm{CN})_{6}\right]_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{2}),\left\{\left[\mathrm{Cu}^{\mathrm{II}}(\mathrm{dmpn})_{2}\right]_{3}\left[\mathrm{Cr}^{\text {III }}(\mathrm{CN})_{6}\right]_{2}\right.$ $\left.\cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{3}), \quad\left\{\left[\mathrm{Cu}^{\mathrm{II}}(\mathrm{dmpn})\right]\left[\mathrm{Ni}^{\mathrm{II}}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ (4), $\left[\left\{\mathrm{Cu}^{\mathrm{II}}(\mathrm{dmpn})_{2} \mathrm{Cl}\right\}\left\{\mathrm{Cu}^{\mathrm{II}}\right.\right.$ $\left.\left.(\mathrm{dmpn})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}\right]\left[\mathrm{Ag}^{\mathrm{I}}(\mathrm{CN})_{2}\right] \mathrm{Cl}_{2}(5),\left[\left(\mathrm{Cu}^{\mathrm{II}}(\mathrm{dmpn})_{2}(\text { dicyanamide })_{2}\right](\mathbf{6})\right.$ and $\left[\left(\mathrm{Ni}^{\mathrm{I}}(\mathrm{dmpn})_{2}(\text { dicyanamide })_{2}\right]\right.$ (7). Herein, we report the syntheses, characterization and molecular and supramolecular structures of 1-7 along with variable-temperature ($2-300 \mathrm{~K}$) magnetic properties of $\mathbf{1}$ and 3.

2. Experimental

2.1. Materials and physical methods

All the reagents and solvents were purchased from commercial sources and used as received. Elemental (C, H and N) analyses were performed on a Perkin-Elmer 2400 II analyzer. IR spectra were recorded, from KBr disks, in the region $400-4000 \mathrm{~cm}^{-1}$ on a BrukerOptics Alpha-T spectrophotometer. Magnetic measurements were carried out in the "Unitat de Mesures Magnètiques (Universitat de Barcelona)" on polycrystalline samples with a Quantum Design SQUID MPMS-XL magnetometer working in the $2-300 \mathrm{~K}$ range. The magnetic fields used were 0.03 (from 2 to 30 K) and 1.0 T (from 2 to 300 K) for $\mathbf{1}$ and 0.03 (from 2 to 30 K) and 0.5 T (from 2 to 300 K) for 3 , respectively.

2.2. Synthesis

2.2.1. $\left\{\left[\mathrm{Cu}{ }^{\text {II }}(\mathrm{dmpn})_{2}\right]_{3}\left[\mathrm{Fe}^{\text {III }}(\mathrm{CN})_{6}\right]_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{1}),\left\{\left[\mathrm{Cu}{ }^{\text {II }}(\mathrm{dmpn})_{2}\right]_{3}\left[\mathrm{Co}^{\text {III }}\right.\right.$ $\left.\left.(\mathrm{CN})_{6}\right]_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ (2) and $\left\{\left[\mathrm{Cu}^{I I}(\mathrm{dmpn})_{2}\right]_{3}\left[\mathrm{Cr}^{I I I}(\mathrm{CN})_{6}\right]_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ (3)

An aqueous solution (10 mL) of $\mathrm{K}_{3}\left[\mathrm{Fe}^{\text {III }}(\mathrm{CN})_{6}\right]$ (for 1; 0.033 g , $0.1 \mathrm{mmol}) / \mathrm{K}_{3}\left[\mathrm{Co}^{\text {III }}(\mathrm{CN})_{6}\right]$ (for 2; $\left.0.032 \mathrm{~g}, 0.1 \mathrm{mmol}\right) / \mathrm{K}_{3}\left[\mathrm{Cr}^{\text {III }}(\mathrm{CN})_{6}\right]$
(for 3; $0.033 \mathrm{~g}, 0.1 \mathrm{mmol}$) was added dropwise to a blue aqueous solution (50 mL) containing copper(II) chloride (0.020 g , 0.15 mmol) and dmpn ($0.031 \mathrm{~g}, 0.3 \mathrm{mmol}$). The color of the mixture changed to green for $\mathbf{1}$ but remained almost unchanged for 2 and 3. Small amounts of a green (for 1) or blue (for 2 and 3) precipitate appeared after a few minutes, which was filtered off and the filtrate was kept undisturbed. After a few days, a crystalline compound (green for 1; blue for 2 and 3) containing diffraction quality single crystals deposited, which was collected by filtration, washed with cold water and air dried.

Data for 1: Yield: 0.055 g (82\%). Anal. Calc. for $\mathrm{C}_{42} \mathrm{H}_{96} \mathrm{~N}_{24} \mathrm{O}_{6}$ $\mathrm{Cu}_{3} \mathrm{Fe}_{2}$ (1335.72): C, 37.77; H, 7.24; N, 25.17. Found: C, 38.02; H, $7.08 ; \mathrm{N}, 25.36 \%$. FTIR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3447 \mathrm{~m}\left[\mathrm{v}_{\mathrm{as}}\left(\mathrm{H}_{2} \mathrm{O}\right)\right], 2116 \mathrm{~s}$ and 2085w [$v(\mathrm{CN})$].

Data for 2: Yield: 0.046 g (68\%). Anal. Calc. for $\mathrm{C}_{42} \mathrm{H}_{96} \mathrm{~N}_{24} \mathrm{O}_{6}$ $\mathrm{Cu}_{3} \mathrm{Co}_{2}$ (1341.89): C, 37.59; H, 7.21; N, 25.05. Found: C, 37.32; $\mathrm{H}, 7.36$; N, 24.87\%. FTIR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3444m [$\mathrm{v}_{\mathrm{as}}\left(\mathrm{H}_{2} \mathrm{O}\right)$], 2129s, [$v(\mathrm{CN})$].

Data for 3: Yield: $0.030 \mathrm{~g}(46 \%)$. Anal. Calc. for $\mathrm{C}_{42} \mathrm{H}_{92} \mathrm{~N}_{24} \mathrm{O}_{4}$ $\mathrm{Cu}_{3} \mathrm{Cr}_{2}$ (1291.99): C, 39.05; H, 7.18; N, 26.02. Found: C, 39.18; H, 7.35 ; N, 26.24\%. FTIR (KBr, cm^{-1}): 3439m [$\left.\mathrm{a}_{\mathrm{as}}\left(\mathrm{H}_{2} \mathrm{O}\right)\right], 2128 \mathrm{~m}$ and 2105sh [$v(\mathrm{CN})$].

2.2.2. $\left\{\left[\mathrm{Cu}{ }^{I I}(d m p n)\right]\left[\mathrm{Ni}^{I I}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{4}),\left[\left\{\mathrm{Cu}^{I I}(d m p n)_{2} \mathrm{Cl}\right\}\left\{\mathrm{Cu}^{I I}\right.\right.$

 $\left.\left.(d m p n)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}\right]\left[\mathrm{Ag}^{I}(\mathrm{CN})_{2}\right] \mathrm{Cl}_{2}(\mathbf{5}),\left[\left(\mathrm{Cu}{ }^{\text {II }}(\text { dmpn })_{2}(\text { dicyanamide })_{2}\right]\right.$ (6) and $\left[\left(\mathrm{Ni}^{I I}(d m p n)_{2} \text { (dicyanamide }\right)_{2}\right]$ (7)An aqueous solution (10 mL) of $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ (for $4 ; 0.060 \mathrm{~g}$, $0.25 \mathrm{mmol}) / \mathrm{K}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$ (for $\left.5 ; 0.051 \mathrm{~g}, 0.5 \mathrm{mmol}\right) /$ sodium dicyanamide (for $\mathbf{6}$ and $7 ; 0.032 \mathrm{~g}, 0.5 \mathrm{mmol}$) was added dropwise to a blue aqueous solution (25 mL) containing copper(II) chloride (for 4-6; $0.034 \mathrm{~g}, 0.25 \mathrm{mmol}$)/nickel(II) chloride hexahydrate (for 7; $0.059 \mathrm{~g}, 0.25 \mathrm{mmol}$) and dmpn ($0.051 \mathrm{~g}, 0.5 \mathrm{mmol}$). The color of the solution remained almost unchanged for $\mathbf{4}$ and $\mathbf{6}$ but changed to blue-violet for 5 and 7. The solution was filtered to remove any suspended particles and the clear filtrate was kept undisturbed. After a few days, crystalline compound containing

Table 1
Crystallographic data for 1-7.

	1	2	3	4	5	6	7
Formula	$\mathrm{C}_{42} \mathrm{H}_{96} \mathrm{~N}_{24} \mathrm{O}_{6} \mathrm{Cu}_{3} \mathrm{Fe}_{2}$	$\mathrm{C}_{42} \mathrm{H}_{96} \mathrm{~N}_{24} \mathrm{O}_{6} \mathrm{Cu}_{3} \mathrm{Co}_{2}$	$\mathrm{C}_{42} \mathrm{H}_{92} \mathrm{~N}_{24} \mathrm{O}_{4} \mathrm{Cu}_{3} \mathrm{Cr}_{2}$	$\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{OCuNi}$	$\mathrm{C}_{22} \mathrm{H}_{56} \mathrm{~N}_{10} \mathrm{OCl}_{3} \mathrm{Cu}_{2} \mathrm{Ag}$	$\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{10} \mathrm{Cu}$	$\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{10} \mathrm{Ni}$
FW	1335.75	1341.91	1292.02	346.53	818.07	400.00	395.17
Crystal color	green	blue	blue	blue	blue-violet	blue	blue-violet
Crystal system	triclinic	triclinic	monoclinic	monoclinic	tetragonal	trigonal	trigonal
Space group	$P \overline{1}$	$P \overline{1}$	$P 2_{1} / n$	$P 2_{1} / \mathrm{c}$	P4 $3_{3}{ }_{1} 2$	$R \overline{3}$	$R \overline{3}$
$a(\AA)$	8.99310(10)	8.96900(10)	11.4542(2)	11.2301(2)	12.3376(2)	25.0731(6)	24.6813(4)
$b(\AA)$	13.0296(2)	13.0191(2)	16.7952(3)	9.7276(2)	12.3376(2)	25.0731(6)	24.6813(4)
$c(\AA)$	15.9704(3)	15.9201(3)	16.3056(3)	13.5585(3)	47.2529(13	8.2346(2)	8.39530(10)
$\alpha\left({ }^{\circ}\right)$	110.3000(10)	110.5550(10)	90	90.00	90.00	90.00	90.00
$\beta\left({ }^{\circ}\right)$	99.9290(10)	99.7140(10)	101.8410(10)	104.7220(10)	90.00	90.00	90.00
$\gamma\left({ }^{\circ}\right)$	99.2320(10)	99.4040(10)	90	90.00	90.00	120(2)	120.00
$V\left(\AA^{3}\right)$	1678.98(4)	1664.99(4)	3070.05(10)	1432.53(5)	7192.7(3)	4483.21(19)	4428.97(11)
Z	1	1	2	4	8	9	9
T (K)	120(2)	120(2)	120(2)	120(2)	120(2)	120(2)	120(2)
2θ	2.80-54.20	2.82-54.20	3.52-56.56	5.22-50.04	3.42-56.56	5.30-52.74	6.60-61.62
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) $\left(\mathrm{mm}^{-1}\right)$	1.413	1.488	1.423	2.796	1.965	1.115	1.005
$\rho_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.321	1.338	1.398	1.607	1.511	1.333	1.333
$F(000)$	703	705	1358	708	3376	1899	1890
Absorption-correction	semi-empirical from equivalents	analytucal	semi-empirical from equivalents				
Index ranges	$-11 \leqslant h \leqslant 11$	$-11 \leqslant h \leqslant 11$	$-15 \leqslant h \leqslant 15$	$-13 \leqslant h \leqslant 13$	$-15 \leqslant h \leqslant 15$	$-35 \leqslant h \leqslant 35$	$-34 \leqslant h \leqslant 35$
	$-16 \leqslant k \leqslant 16$	$-16 \leqslant k \leqslant 16$	$-22 \leqslant k \leqslant 22$	$-9 \leqslant k \leqslant 11$	$-15 \leqslant k \leqslant 15$	$-34 \leqslant k \leqslant 35$	$-35 \leqslant k \leqslant 33$
	$-20 \leqslant l \leqslant 20$	$-20 \leqslant l \leqslant 20$	$-21 \leqslant l \leqslant 21$	$-16 \leqslant l \leqslant 16$	$-62 \leqslant l \leqslant 62$	$-11 \leqslant l \leqslant 11$	$-12 \leqslant l \leqslant 11$
Reflections collected	21391	21186	41997	8470	80307	28169	26235
Independent reflections ($R_{\text {int }}$)	7423/0.0423	7362/0.0361	7613/0.0264	2535/0.0265	8667/0.0455	3027/0.0299	2978/0.0298
$R_{1}{ }^{\text {a }} / w R_{2}{ }^{\text {b }}$ [$\left.I>2 \sigma(I)\right]$	0.0391/0.0908	0.0351/0.0814	0.0238/0.0613	0.0272/0.0681	0.0310/0.0731	0.0237/0.0620	0.0230/0.0551
$R_{1}{ }^{\text {a }} / w R_{2}{ }^{\text {b }}$ [for all $F_{\text {a }}{ }^{\text {] }}$	0.0583/0.1014	0.0497/0.0895	0.0281/0.0638	0.0318/0.0712	0.0352/0.0749	0.0272/0.0638	0.0260/0.0564

[^1]
https://daneshyari.com/en/article/1336660

Download Persian Version:
https://daneshyari.com/article/1336660

Daneshyari.com

[^0]: * Corresponding authors. Tel.: +91 9433883751 (S. Mohanta).

 E-mail addresses: nuria.aliaga@icrea.cat (N. Aliaga-Alcalde), sm_cu_chem@ yahoo.co.in (S. Mohanta).

[^1]: ${ }^{\text {a }} R_{1}=\left[\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|\right]$.
 ${ }^{\mathrm{b}} w R_{2}=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma w F_{\mathrm{o}}^{4}\right]^{1 / 2}$.

