

Contents lists available at ScienceDirect

Polyhedron

Syntheses, crystal structure and spectroscopic characterization of bis(dithiocarbimato)-nickel(II)-complexes: A new class of vulcanization accelerators

Leandro Marcos Gomes Cunha ^{a,c}, Mayura Marques Magalhães Rubinger ^a, José Ricardo Sabino ^b, Leila Léa Yuan Visconte ^c, Marcelo Ribeiro Leite Oliveira ^{a,*}

ARTICLE INFO

Article history: Received 25 March 2010 Accepted 28 April 2010 Available online 5 May 2010

Keywords:
Dithiocarbimates
Nickel complexes
Crystal structures
Vulcanization accelerators

ABSTRACT

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Several dithiocarbamate and N-substituted dithiocarbamate complexes and salts have been used as agrochemicals mainly due to their high efficiency in controlling plant fungal diseases, and relatively low toxicity [1-6]. It is interesting to note that many dithiocarbamato-zinc(II)-complexes are simultaneously fungicides and vulcanization accelerators. A classical example is the bis(dimethyldithiocarbamato)zinc(II) (Ziran) [2]. Bis(dithiocarbamato)zinc(II)-complexes are worldwide used in the rubber vulcanization process and are known as ultra-accelerators due to their extremely rapid vulcanization properties [1,2,7-10]. Nevertheless, despite their widespread application in the rubber industries, these accelerators are frequently criticized due to the potential production of nitrosamines during the vulcanization processes [11]. Derivatives of the dithiocarbamate class suitable for industrial application have been prepared from "safe" amines in order to avoid the formation of the carcinogenic nitrosamines [12]. Furthermore, dithiocarbamates such as bis(dimethyldithiocarbamato)zinc(II) show very low scorch safety [13], what may represent a processing problem.

Metal(II)-dithiocarbamato-complexes are neutral substances while the analogous dithiocarbimato-complexes are anionic spe-

cies. The improvement and/or modulation of the vulcanization activity is an interesting possibility for anionic metal-sulfur compounds, which can be accomplished either by modifying the solubility of the complexes salts with the use of different cations or different R groups on the dithiocarbimate structures, or by using active counter ions. Besides, the right choice of R groups and counter-ions can avoid the formation of nitrosamines.

Here, we describe the syntheses and the rubber vulcanization activity of related compounds containing dithiocarbimate anions derived from sulfonamides with the formula $(Ph_4P)_2[Ni(R-SO_2N=CS_2)_2]$ $[Ph_4P^*=$ tetraphenylphosphonium cation; $R=CH_3$ $(\mathbf{1b})$, CH_3CH_2 $(\mathbf{2b})$, $CH_3(CH_2)_3$ $(\mathbf{3b})$ and $CH_3(CH_2)_7$ $(\mathbf{4b})]$. The presence of the R-sulphonyl group linked to the nitrogen atom of the dithiocarbimate moiety is important and may avoid the production of nitrosamines. The compounds $\mathbf{1b}$ — $\mathbf{4b}$ were characterized by IR, 1H and ^{13}C NMR spectroscopies, and by C, H, N and Ni elemental analyses. The compounds $\mathbf{2b}$ and $\mathbf{3b}$ were also characterized by X-ray diffraction techniques.

2. Experimental

2.1. Materials and methods

The solvents were purchased from Merck and used without further purification. Carbon disulfide and potassium hydroxide were

^a Departamento de Química, Universidade Federal de Viçosa, Viçosa MG 36570-000, Brazil

^b Instituto de Física. Universidade Federal de Goiás, P.O. Box 131, Goiânia GO 74001-970, Brazil

c Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, P.O. Box 68525, Rio de Janeiro RJ 21941-598, Brazil

^{*} Corresponding author. Tel.: +55 31 3899 3059; fax: +55 31 3899 3065. E-mail address: marcelor@ufv.br (M.R. Leite Oliveira).

purchased from Vetec. The tetraphenylphosphonium bromide, ethanesulfonyl chloride, butanesulfonyl chloride, octanesulfonyl chloride and methanesulfonamide were purchased from Aldrich. The other sulfonamides were prepared from the corresponding alkylsulfonyl chlorides, in reaction with concentrated ammonia aqueous solution (Vetec), under reflux. The sulfonamides were isolated after extraction with ethyl acetate and solvent evaporation. Melting points (m.p.) were determined with a Mettler FPS equipment. Microanalyses for C, H and N were obtained from a Perkin Elmer Elemental Analyzer 2400 CHN. Nickel was analyzed by atomic absorption with a Varian Spectra AA200 Atomic Absorption Spectrophotometer. The IR spectra were recorded with a Perkin Elmer 283 B infrared spectrophotometer using CsI pellets. The ¹H and ¹³C NMR spectra were recorded with a Bruker Advance DRX-400 spectrophotometer in D₂O for the dithiocarbimate potassium salts and CDCl₃ for the other compounds.

2.2. Syntheses of the dithiocarbimate potassium salts

The syntheses of **1a** and **2a** are described in literature [14,15]. All the procedure was carried out in ice bath. Carbon disulfide (0.2 mol) and potassium hydroxide (0.1 mol) were added to a solution of the corresponding sulfonamide (0.2 mol) in DMF (100 mL). The mixture was stirred for 2 h previous to the addition of a second portion of potassium hydroxide (0.1 mol). After stirring for further 2 h, 30 mL of ice cold ethanol was added. The yellowish solid obtained was separated by filtration, washed with ice ethanol, ethyl acetate, diethyl ether, and dried under reduced pressure yielding RSO₂N=CS₂K₂·2H₂O (ca. 65% based on the sulfonamide).

2.2.1. Potassium N-butylsulfonyldithiocarbimate dihydrate, (3a)

IR (CsI) (most important bands) (cm $^{-1}$): 1283 (ν CN), 1255 (vSO_{2as}) , 1106 (vSO_{2s}) , 966 (vCS_{2as}) . ¹H NMR (δ) , J (Hz): 0.89 (t, J= 7.4, 3H, H4); 1.41 (m, 2H, H3); 1.66 (m, 2H, H2); 3.49 (t, I = 8.0, 2H, H1). ¹³C NMR (δ): 13.0(C4); 21.1(C3); 25.0(C2); 50.2(C1); 223.6($N=CS_2$).

2.2.2. Potassium N-octylsulfonyldithiocarbimate dehydrate, (4a)

IR (CsI) (most important bands) (cm⁻¹): 1285 (ν CN), 1255 (vSO_{2as}) , 1112 (vSO_{2s}) , 979 (vCS_{2as}) . ¹H NMR (δ), J (Hz): 0.73–0.78 (m, 3H, H8), 1.1-1.4 (m, 10H, H7 to H3); 1.5-1.7 (m, 2H, H2); 3.42 (t, J = 8.1, 2H, H1). ¹³C NMR (δ): 13.5(C8); 22.0(C7); 22.8(C6); 27.7(C5); 28.3(C3 and C4); 31.1(C2); 50.4(C1); 223.6($N=CS_2$).

2.3. Syntheses of the nickel complexes

The synthesis of **4b** is described in literature. In this work, the preparation of 4b was confirmed by IR and comparison with the published data [16]. The compounds 1b-4b were prepared as described below.

Nickel(II) chloride hexahydrate (20.0 mmol) and tetraphenylphosphonium bromide (40.0 mmol) were added to a solution of the appropriate potassium N-R-sulfonyldithiocarbimato (40.0 mmol) in 1:1 (100 mL) methanol:water. The mixture was stirred at room temperature for 1 h and the green solid obtained was filtered, washed with distilled water and dried under reduced pressure for 1 day, yielding (Ph₄P)₂[Ni(RSO₂N=CS₂)₂] (ca. 90%, based on nickel (II) chloride hexahydrate). Compounds 2b and 3b were obtained as dark green/brown single crystals suitable for X-ray diffraction experiments by slow evaporation of their solutions in methanol:water (2:1) at room temperature.

2.3.1. Tetraphenylphosphonium

bis(methylsulphonyldithiocarbimato)nickelate(II). (1b)

Found (Calcd for C₅₂H₄₆N₂O₄P₂S₆Ni): C, 57.72 (58.05); H, 4.15 (4.31); N, 2.72 (2.60); Ni, 5.22 (5.45). M.p. (°C): 211.8-213.4. IR (CsI) (most important bands) (cm $^{-1}$): 1403 (vCN), 1285 (vSO_{2as}), 1129 (vSO_{2s}), 926 (vCS_{2as}), 396 (vNiS). ¹H NMR (dithiocarbimate anion signals) (δ): 3.1 (s, H1). ¹³C NMR (dithiocarbimate anion signals) (δ): 40.1 (C1), 210.3 (N=CS₂).

2.3.2. Tetraphenylphosphonium bis(4-

ethylsulphonyldithiocarbimato)nickelate(II), (2b)

Found (Calcd for C₅₄H₅₀N₂O₄P₂S₆Ni): C, 58.62 (58.75); H, 4.54 (4.56); N, 2.84 (2.54); Ni, 5.43 (5.32). M.p. (°C): 192.7-193.9. IR (CsI) (most important bands) (cm $^{-1}$): 1429 (vCN), 1280 (vSO_{2as}), 1115 (vSO_{2s}), 936 (vCS_{2as}), 394 (vNiS). ¹H NMR (dithiocarbimate anion signals) (δ), J (Hz): 1.21 (t, J = 7.4, 6H, H2); 3.13 (q, J = 7.4, 4H, H1). ¹³C NMR (dithiocarbimate anion signals) (δ): 8.4 (C2); 46.7 (C1); 212.0 (N=CS₂).

2.3.3. Tetraphenylphosphonium

bis(butylsulphonyldithiocarbimato)nickelate(II), (3b)

Found (Calcd for C₅₈H₅₈N₂O₄P₂S₆Ni): C, 59.45 (60.05); H, 4.86 (5.04); N, 2.56 (2.41); Ni, 4.87 (5.06). M.p. (°C): 184.4-185.9. IR (CsI) (most important bands) (cm $^{-1}$): 1425 (vCN), 1267 (vSO_{2as}), 1109 (vSO_{2s}), 935 (vCS_{2as}), 393 (vNiS). ¹H NMR (dithiocarbimate anion signals) (δ), J (Hz): 0.84 (t, J = 7.3, 6H, H4); 1.33 (m, 4H, H3); 1.75 (m, 4H, H2); 3.16 (t, J = 8.0, 4H, H1). ¹³C NMR (dithiocarbimate anion signals) (δ): 13.7 (C4); 21.9 (C3); 25.6 (C2); 52.4 (C1); 211.8 (N=CS₂).

2.4. X-ray diffraction experiments

Crystallographic and structural refinements data of 2b and 3b are summarized in Table 1. Compounds 2b and 3b samples of prismatic shape were used for data collections performed using a KappaCCD diffractometer [17]. Unit cell refinement and data reduction were performed with Denzo and Scalepack packages [18]. All data collections were carried out with Co K\alpha radiation at room temperature. All data were corrected for absorption effects by the Gaussian method using indexed faces [19]. The structures were solved by

Table 1 Crystal data and structure refinement for compounds 2b and 3b.

Compound	2b	3b
Empirical formula	C ₅₄ H ₅₀ N ₂ NiO ₄ P ₂ S ₆	C ₅₈ H ₅₈ N ₂ NiO ₄ P ₂ S ₆
M	1104.01	1160.11
T (K)	298(2)	299(2)
Crystal system	monoclinic	triclinic
Space group	$P2_1/c$	PĪ
a (Å)	12.1911(3)	10.1209(3)
b (Å)	14.2762(3)	10.4710(3)
c (Å)	16.2390(3)	14.3200(4)
α (°)	-	71.275(1)
β (°)	109.887(1)	80.178(2)
γ (°)	-	86.531(2)
$V(Å^3)$	2657.73(10)	1416.16(7)
Z	2	1
$D_{\rm c}$ (g cm ⁻³)	1.380	1.360
$\mu (\text{mm}^{-1})$	0.708	0.668
Reflections collected	10527	26353
Independent reflections	6029	6417
$(R_{ m int})$	0.0201	0.0843
Goodness-of-fit (GOF) on F^2	1.074	1.050
Final R indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0603$	$R_1 = 0.0685$
	$wR_2 = 0.1553$	$wR_2 = 0.1587$
R_1 (all data) ^a	0.1047	0.1458
wR_2 (all data) ^a	0.1965	0.2195
a $R_1 = \sum (F_1 - F_2)/\sum F_2 \cdot wR_2 = [\sum w(F_2 - F_2)^2/\sum wF_2^2]^{1/2}$		

Download English Version:

https://daneshyari.com/en/article/1336677

Download Persian Version:

https://daneshyari.com/article/1336677

Daneshyari.com