Polyhedron 65 (2013) 122-128

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

in tetracoordinate and hexacoordinate Co(II) complexes.

Zero-field splitting in pentacoordinate Co(II) complexes

C. Rajnák^{a,b}, J. Titiš^a, I. Šalitroš^{c,d}, R. Boča^{a,*}, O. Fuhr^d, M. Ruben^{b,d}

^a Department of Chemistry, FPV, University of SS Cyril and Methodius, SK-917 01 Trnava, Slovakia

^b Institute de Physique et Chimie de Materiaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, F-67034 Strasbourg, France

^c Institute of Inorganic Chemistry, FCHPT, Slovak University of Technology, SK-812 37 Bratislava, Slovakia

^d Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmhotz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

ARTICLE INFO

ABSTRACT

Article history: Received 15 April 2013 Accepted 6 August 2013 Available online 14 August 2013

Keywords: Cobalt(II) complex Crystal structure Zero-field splitting Magnetostructural D-correlation

1. Introduction

Magnetostructural correlations are widely studied in literature since they form a basis for a relationship between structure and magnetoactivity of coordination compounds. Majority of attempts were focused to the correlation of the isotropic exchange coupling constant / versus an appropriate structural parameter - an M-X-M angle or M-X bond length within the superexchange path in binuclear or polynuclear complexes [1-15]. This type of correlation can be termed the magnetostructural J-correlations since recently another type has been outlined, namely the magnetostructural D-correlations. Here the axial zero-field splitting parameter D in mononuclear complexes is in a relation with the structural tetragonality.

In hexacoordinate Ni(II) complexes such a correlation is given by a straight line (in fact a pair of nearly collinear straight lines) and *D*-values vary between D/hc = -8 to +8 cm⁻¹ [16–21]. In hexacoordinate Co(II) complexes, however, the correlation is represented by a set of parametric non-linear curves in the segment of the compressed tetragonal bipyramid [22-25]. In hexacoordinate Co(II) complexes the retrieved set of D-values spans the interval of D/hc = +70 to +144 cm⁻¹ (always positive). In addition to magnetometry (temperature dependence of the magnetic susceptibility, and field dependence of the magnetization) also the FAR-IR spectra are helpful in a direct spectral determination of the D-parameter for centrosymmetric complexes [26–28]. In tetracoordinate Co(II)

E-mail address: roman.boca@stuba.sk (R. Boča).

complexes a reliable data set started to be build up by combining the magnetometry, high-field/high-frequency EPR, and quantumchemical calculations [29]. In tetracoordinate complexes possessing the {CoN₂X₂} and/or {CoX₄} chromophores the D-values are much lower and could be either negative or positive: D/hc = -15to $+40 \text{ cm}^{-1}$ [29–31]. Preliminary data show that D-values are more sensitive to the angular distortions of the reference tetrahedron; in addition to the T_d symmetry, D_{2d} , C_{2v} and C_1 frequently occur.

Pentacoordinate Co(II) complexes possessing the { CoN_3X_2 } chromophore (X = Cl, O) have been synthe-

sized and structurally characterized. The magnetic data confirm high magnetic anisotropy expressed

through the axial zero-field splitting parameter D/hc = 50-70 cm⁻¹. These values lie between those found

A logical step forward is to investigate the pentacoordinate Co(II) complexes. However, there are more structural parameters in the play, since in addition to the radial parameters in $\{CoN_3X_2\}$ chromophores also the angular coordinates vary: the angles $\alpha = N$ -Co–N and β = X–Co–X. The literature sources about of the magnetic parameters (D) in pentacoordinate Co(II) complexes are rather modest [32–35] so that the only way is to prepare a series of complexes and to investigate them by modern magnetometric hardware and magnetochemical software. A direct measurement of the energy gap by the high-frequency/high-field EPR technique meets difficulties since the estimated range of D-parameters (around 50 cm⁻¹) lies outside the capabilities of the existing hardware. Indirect EPR estimates, however, are at the disposal; they were based upon the spin lattice relaxation time as a basis for the determination of the lowest energy gap in a series of Co(II) complexes with coordination numbers 4, 5, and 6 [33].

A rational design of the zero-field parameter is a challenge of recent period. The *D*-parameter enters the formula for the barrier to spin reversal in single-molecule magnets ($\Delta = |D|S^2$) and therefore it is a first prerequisite of the magnetism at the molecular level [36]. The greater the *D*-parameter, the greater the barrier to spin

© 2013 Elsevier Ltd. All rights reserved.

CrossMark

POLYHEDRON

^{*} Corresponding author. Tel.: +421 905763967.

^{0277-5387/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.poly.2013.08.029

reversal Δ , and the longer the lifetime of the single-molecule magnets.

2. Experimental

2.1. General

Chemicals were purchased from Sigma–Aldrich and Merck and used as received. The solvents, *n*-hexane, Et₂O, EtOAc, CH₂Cl₂, CH₃OH were used without further purification; CH₃CN and $(^{i}pr)_{2}NH$ were dried by distillation over CaH₂.

¹H and ¹³C NMR spectra were recorded using FT-NMR Spectrometer (Avace III 500 MHz, Bruker) with solvent proton as an internal standard. The infrared spectra in KBr pellets in the range 4000–400 cm⁻¹ were acquired at room temperature using FT-IR spectrometer (Spectrum GX, Perkin Elmer). Electron spectra were measured by UV–Vis–NIR spectrophotometer (Cary 500 Scan). Mass spectra were measured by micrOTOF-QII for ESI-TOF (Bruker). Elemental analyses were carried out on a Vario MICRO cube. For thin-layer chromatography silica plates POLYGRAM SIL G/UV₂₅₄ and alumina plates POLYGRAM ALOX N/UV₂₅₄ were used under the ultraviolet light at 254 nm. Melting points were determined Melting Point B-540 (Büchi).

The magnetic measurements were conducted using a sound apparatus (MPMS-XL7, Quantum Design) in the RSO mode of detection. About 20 mg of the sample was encapsulated in a gelatin-made sample holder. The susceptibility taken at B = 0.1 T has been corrected for the underlying diamagnetism and converted to the effective magnetic moment. The magnetization has been measured at two temperatures: T = 2.0 and T = 4.6 K.

2.2. Synthesis

The ligand 4'-iodo-2',6'-dipyrazolyl-pyridine (**L**¹) was synthesized following reported procedures [37–41].

The ligand 4'-dodecvnvl-2'.6'-dipyrazolyl pyridine (L^2) was prepared as follows. In a 100 cm³ two necked round bottom flask, a freshly distilled (i-pr)₂NH (50 cm³) was deoxygenated under the Ar flux for 1 h. L^1 (0.674 g, 2 mmol), 10% of Pd⁰(PPh₃)₄ and CuI (0.038 g, 0.2 mmol) were suspended in an Ar-gas bubbled solution of (ⁱpr)₂NH and stirred for 1 h. 1-Dodecyne (0.665 g, 4 mmol) was added and the mixture was stirred for 3 days at RT. The solvent was removed using a rotary evaporator. The solid residue was at first column chromatographed on alumina with EtOAc/n-Hex $(1:20, R_f = 0.50)$ as an eluent. The combined slightly yellowish solutions yielded upon evaporation and dried in vacuum to 0.35 g of a white powder (0.93 mmol, 46.6%). Anal. Calc. C₂₃H₂₉N₅: C, 73.57, H, 7.78; N, 18.65. Found: C, 73.59; H, 7.63; N, 18.59%. Melting point 53–55 °C. ¹H NMR [500 MHz, CDCl₃, 25 °C, δ/ppm]: 8.53 (d, 2H), 7.83 (s, 2H), 7.75 (t, 2H), 6.49 (dd, 2H), 2.45 (t, 2H), 1.61 (m, 2H), 1.44 (m, 2H), 1.29 (m, 12H), 0.87 (t, 3H). ¹³C NMR [125 MHz, CDCl₃, 25 °C, δ/ppm]: 150.10, 142.43, 137.73, 127.09, 111.69, 108.02, 97.46, 78.32, 31.92, 29.16, 22.70, 19.52, 14.13. UV-Vis (CH₂Cl₂): λ_{max} (ϵ , M⁻¹ cm⁻¹) = 251 (61204), 322 (16213). FT-IR (KBr): v/cm^{-1} = 3114, 3094, 2914, 2850, 2244, 1783, 1738, 1615, 1555, 1523, 1468, 1398, 1266, 1210, 1115, 1053, 1039, 959, 938, 856, 794.757.

Single crystals for X-ray diffraction were grown from CH₃OH. Formula C₂₃H₂₉N₅; *M* = 375.51; *T* = 180(2) K; crystal system: monoclinic; crystal size/mm = 0.25 × 0.07 × 0.05; space group: *P*2(1)/*c*; *a* = 5.395(3) Å; *b* = 20.0348(10) Å; *c* = 19.9239(12) Å; *α* = 90°, *β* = 94.245(53)°, *γ* = 90°, *V* = 2147.6(2) Å³; *Z* = 4; *ρ*_{calc} = 1.161 g cm⁻³, μ (Mo K α) = 0.71073 mm⁻¹; reflections measured: 4056, *F*(000) = 808, goodness-of-fit on *F*² = 0.881, final *R* indices $[I > 2\sigma(I)]$: R1 = 0.0482; $wR_2 = 0.1005$, R indices (all data): $R_1 = 0.1041$, $wR_2 = 0.1163$, extinction coefficient = 0.0193(17).

Preparation of the complex $[CoCl_2L^1]$, **1**. In a 100 cm³ two necked round bottom flask a solution of L^1 (100 mg, 0.30 mmol) and CoCl₂·6H₂O (70.57 mg, 0.30 mmol) in CH₃CN (40 cm³) was heated at 80 °C for overnight under Ar flow. The reaction mixture was cooled down to room temperature. Blue block-shaped crystals were grown from diffusing the Et₂O into the CH₃CN solution of the complex under Ar at room temperature in several days. Yield 103.1 mg (0.22 mmol, 74.44%). Anal. Calc. C₁₁H₈Cl₂CoIN₅·0.45H₂O: C, 27.81; H, 1.89, N 14.74. Found: C, 27.75; H, 1.78; N, 14.74%. $\theta_{\rm f}$ = 394–396 °C. ESI-TOF MS (CH₃CN): m/z = 430.86 [M]⁺. UV/VIS (Nujol): $v_{\text{max}}/10^3 \text{ cm}^{-1}$ (absorbance) = 15.649 (0.247), 17.483 (0.201), 24.445 (0.600), 30.121 (1.078). FT-IR (KBr): v/cm^{-1} = 3340, 3207, 3108, 3096, 1602, 1561, 1519, 1496, 1453, 1414, 1390, 1335, 1271, 1216, 1205, 1173, 1136, 1078, 1050, 962, 923, 910, 861, 834, 788, 766, 745, 642, 601, 539,

Preparation of the complex $[CoCl_2L^2]$, **2**. In a 100 cm³ two necked round bottom flask a solution of **L**² (100 mg, 0.27 mmol) and CoCl₂·6H₂O (63.36 mg, 0.27 mmol) in CH₃CN (40 cm³) was heated at 80 °C for overnight under Ar flow. The reaction mixture was cooled down to room temperature. This compound was synthesized as described for **1**. Blue needle-shaped crystals were grown by evaporation of CH₃CN solution of the complex at the room temperature in several days. Yield 110 mg (0.218 mmol, 81.45 %). Anal. Calc. C₂₃H₂₉CoCl₂N₅·0.3H₂O: C, 54.09; H, 5.84 N, 13.71. Found: C, 53.99; H, 5.73; N, 13.67%. Melting point 276– 278 °C. ESI-TOF MS (CH₃CN): m/z = 469.11 [M]. UV–Vis (Nujol): $v_{max}/10^3$ cm⁻¹ (absorbance) = 16.313 (0.172), 30.030 (0.977). FT-IR (KBr): v/cm^{-1} = 3107, 2922, 2852, 2218, 1618, 1553, 1525, 1495, 1453, 1402, 1399, 1266, 1225, 1171, 1049, 965, 901, 853, 791, 761, 629, 587, 480.

2.3. X-ray structure determination

Single crystal X-ray data were collected on a STOE IPDS II diffractometer with graphite monochromated Mo K α radiation (λ = 0.71073 Å). Structure solution and refinement against F^2 were carried out using SHELXS and SHELXL software [42]. Refinement was performed with anisotropic temperature factors for all non-hydrogen

Table 1		
Crystal data	for compounds	1

Crystal data for compou	inds 1 and 2.
-------------------------	---------------

		Complex 1	Complex 2
Em	pirical formula	C ₁₁ H ₈ Cl ₂ CoIN ₅	C ₂₇ H ₃₅ Cl ₂ CoN ₇
Foi	rmula weight (g mol ⁻¹)	466.95	587.45
Cry	ystal system	monoclinic	orthorhombic
Spa	ace group	P2(1)/c	Pbca
Τ (K)	180(2)	180(2)
Cry	ystal size (mm)	$0.21 \times 0.12 \times 0.11$	$0.24 \times 0.09 \times 0.01$
Ζ		4	8
a (.	Å)	10.5357(8)	15.3677(5)
b (Å)	8.1978(7)	14.5418(6)
с (л	Å)	17.1482(11)	26.9215(10)
α(°)	90	90
β(°)	97.523(5)	90
γ(0	90	90
V (Å ³)	1468.33(19)	6016.3(4)
Cal	culated density D_{calc}	2.112	1.297
Ab	sorption coefficient (mm ⁻¹)	3.630	0.0776
Rei	flections collected/	5182/2421	19388/5626
	unique (R _{int})	[R(int) = 0.0422]	[R(int) = 0.0677)
Fin	al R indices	$R_1 = 0.0304$,	$R_1 = 0.0402$,
		$wR_2 = 0.0661$	$wR_2 = 0.1065$
Ri	ndices (all data)	$R_1 = 0.0465$,	$R_1 = 0.0614$,
		$wR_2 = 0.0699$	$wR_2 = 0.1226$

Download English Version:

https://daneshyari.com/en/article/1336778

Download Persian Version:

https://daneshyari.com/article/1336778

Daneshyari.com