ELSEVIER

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

An alkyl-ended *ansa*-bis(amidine) and solvent-influenced complexation modes of its group IV metal derivatives

Sheng-Di Bai ^{a,*}, Rui-Qin Liu ^a, Tao Wang ^a, Fei Guan ^a, Yan-Bo Wu ^b, Jian-Bin Chao ^a, Hong-Bo Tong ^a, Dian-Sheng Liu ^{a,*}

ARTICLE INFO

Article history: Received 21 May 2013 Accepted 4 August 2013 Available online 22 August 2013

Keywords: Group IV metal Silyl-linked Ansa-bis(amidine) Transformation Polymerization

ABSTRACT

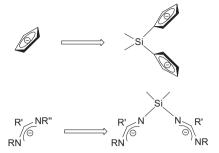
The ^tBu-ended ansa-bis(amidine) SiMe₂[NC(Ph)NH(^tBu)]₂ (1) was prepared by treating ^tBuNH₂ with one equivalent of both LiBuⁿ and PhCN, and half equivalent of SiMe₂Cl₂ in a one-pot reaction. 1 combined with HCl to give an ion pair complex [(*Bu)NHC(Ph)NH]SiMe₂[NC(Ph)NH(*Bu)]Cl (2) and one N-C-N moiety was converted to a cationic amidinium ion. The complexation behaviour of 1 with group IV metal chlorides was explored. Treating 1 with TiCl₄(thf)₂ in CH₂Cl₂ gave the titanium complex [(Bu)NHC(Ph)N]Ti(thf)2Cl3 (3), in which the mono-amidinato ligand was supposedly derived from N-Si cleavage of 1 due to the high Lewis acidity of the titanium salt. The zirconium complex $[(^{1}Bu)NHC(Ph)NH]SiMe_{2}[NC(Ph)N(^{1}Bu)]ZrCl_{4}$ (4) and the hafnium complex 5 were obtained by treating 1 with MCl_4 (M = Zr and Hf) in THF and these complexes were crystallized from CH_2Cl_2 . Reaction of 1 with TiCl₄(thf)₂ in toluene yielded {SiMe₂[NC(Ph)NH(^tBu)]₂Ti[NC(Ph)NH₂(^tBu)]Cl₃}Cl (6), indicating the N-Si cleavage could be partially suppressed in a less polar environment. Recrystallization of 4 in toluene afforded SiMe₂[NC(Ph)NH(^tBu)]₂ZrCl₄ (7). Similarly, recrystallization of 5 in toluene gave 8, which is isostructural to **7**. The reaction of **4** with AlMe₃ in THF yielded the zirconium complex [(^tBu)NHC(Ph)N]Zr(thf)₂Cl₃ (9), which is analogous to 3. The solid state structures of complexes 2, 3, 4, 6, 7, 8 and 9 were investigated by single crystal X-ray structural analysis, Complexes 3 and 9 were found to be moderately active towards ethylene polymerization in the presence of methylaluminoxane (MAO).

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Amidinates are four-electron, monoanionic and N-donor bidentate chelating ligands. They demonstrate a great diversity by the variation of substituents on the conjugated N-C-N backbone. Meanwhile, the steric and electronic properties are easily modified to meet the needs of different metal centers [1–3]. The coordination chemistry of amidinates towards various metals has been well studied over the past few decades [4,5]. Amidinate complexes have proven to be promising as potential catalysts for the oligomerization and polymerization of olefins, hydroamination, intramolecular hydroamination/cyclization and hydrosilylation [6–11]. The numerous features and widespread applications have made amidinate ligands an important ancillary ligand array comparable to the ubiquitous cyclopentadienyl (Cp) system.

As shown in Scheme 1, the monocyclopentadienyl (Cp) ligand could be bridged to give the more rigid *ansa*-Cp ligand system. This type of transformation has influenced stereospecific olefin


polymerization deeply. Inspired by such a remarkable impetus on upgrading from Cp to ansa-Cp to organometallic chemistry, increasing interest has been aroused towards metal complexes with dianionic linked bis(amidinate) ligands incorporated as spectator ligands [9-21]. For example, a series of mononuclear and binuclear lanthanide compounds were capable of catalyzing the ring-opening polymerization of lactones and lactides efficiently [17]. The linked bis(amidinate) ligands had several kinds of linking modes, including flexible carbon chains [10,11,17], chiral 1,2cyclohexanyl [9,15,16] and a kind of rigid aromatic ring linker [20]. We explored a class of silyl linked bis(amidinate) ligands, $[SiMe_2{NC(Ph)N(R)}_2]^{2-}$ [22]. They displayed a close contact between the two amidinate moieties and had the advantage of affording binuclear complexes or mononuclear complexes analogous to "ansa-metallocene". With respect to the bridged biscyclopentadienyl η^5 : η^5 ligands, the silyl-linked bis(amidinate) ligands can be considered as $\eta^3:\eta^3$ alternative systems. Since the latter are more electron-deficient than the former, it is supposedly helpful to enhance the electrophilic behaviour of the metal center and then improve its activity for olefin polymerization. It should be noted that the type of the terminal group R in [SiMe₂] $\{NC(Ph)N(R)\}_2\}^{2-}$ would impact deeply the corresponding

^a Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, PR China

b Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi 030006, PR China

^{*} Corresponding authors. Tel./fax: +86 351 7011743.

E-mail addresses: sdbaisxu@163.com, sdbai@sxu.edu.cn (S.-D. Bai), dsliu@sxu.edu.cn (D.-S. Liu).

Scheme 1. The schematic comparison of Cp and amidinate ligands.

complexes in the aspects of both structure and properties. Herein, we report a newly developed pathway for the ligand precursor 'Buended *ansa*-bis(amidine), and the synthesis and catalytic properties with regard to ethylene polymerization of its metal derivatives.

2. Experimental

2.1. General considerations

All manipulations and reactions were performed under a purified nitrogen atmosphere using standard Schlenk techniques on a dual manifold Schlenk line. Solvents were purchased from commercial sources. The deuterated solvent CDCl₃ was dried over activated molecular sieves (4 Å) and vacuum-transferred before use. Tetrahydrofuran, diethyl ether and toluene were distilled from sodium/benzophenone and stored over a potassium mirror under nitrogen. Dichloromethane was distilled from CaH₂ under nitrogen. LiBuⁿ and the metal chlorides were used as purchased from Alfa Aesar. Glassware was oven-dried at 150 °C overnight. The NMR spectra were recorded on a Bruker DRX-300 instrument, and solvent resonances were used as the internal references for both ¹H and ¹³C NMR spectra. Elemental analyses were performed with a Vario EL-III analyzer.

2.2. Synthesis of the metal complexes

2.2.1. $SiMe_2[NC(Ph)NH(^tBu)]_2$ (1)

A solution of LiBuⁿ (2.2 mol L⁻¹, 3.6 mL, 10 mmol) in hexane was added to a stirred solution of 'BuNH2 (1.06 mL, 10 mmol) in THF (ca 30 mL) by syringe at 0 °C. The reaction mixture was warmed to room temperature and kept stirring for 3 h and then PhCN (1.00 mL, 10 mmol) was added by syringe at 0 °C. The reaction mixture was warmed to room temperature and kept stirring for 4 h and then SiMe₂Cl₂ (0.61 mL, 5 mmol) was added by syringe at 0 °C. After stirring at room temperature for 4 h, it was dried in vacuum to remove all volatiles. The residue was extracted with CH₂Cl₂ (30 mL) and recrystallized with hexane. It gave 1 as colorless crystals. Yield: 1.98 g (97%). 1 H NMR (300 MHz, CDCl₃) δ (ppm): 7.47-7.22 (m, 10H; phenyls), 1.43, 1.37, 1.30 (t, 18H; 2CMe3), -0.36,~-0.40 (d, 6H; SiMe2). ^{13}C NMR (75 MHz, CDCl3) δ (ppm): 142.5-127.4 (phenyls), 52.6, 52.1 (CMe₃), 31.2, 29.8 (CMe₃), 3.2, 2.7 (SiMe₂). Anal. Calc. For C₂₄H₃₆N₄Si (408.65): C, 70.54; H, 8.88; N, 13.71. Found: C, 70.81; H, 8.95; N, 13.58%.

2.2.2. $[({}^{t}Bu)NHC(Ph)NH]SiMe_{2}[NC(Ph)NH({}^{t}Bu)]Cl(\mathbf{2})$

 H_2O (0.027 mL, 1.50 mmol) was added to a stirred slurry of AlCl₃ (0.20 g, 1.50 mmol) in THF (ca 20 mL) by syringe at 0 °C. The mixture was warmed to room temperature and kept stirring for 4 h and filtered. Then **1** (0.61 g, 1.50 mmol) was added into the filtrate. The solution was stirred overnight and dried in vacuum

to remove all volatiles. The residue was extracted with CH_2Cl_2 (25 mL) and filtrate was concentrated to give **2** as colorless crystals. Yield: 0.51 g (76%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 10.80, 9.76 (d, 2H; [NH–C–NH]⁺), 7.56–7.10 (m, 10H; phenyls), 4.96 (s, 1H; NH–C–N), 1.43, 1.36, 1.05 (t, 18H; 2C Me_3), 0.04, –0.30 (d, 6H; Si Me_2). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 131.7–127.3 (phenyls), 31.4, 29.9, 29.2 (C Me_3), 1.6, 1.1 (Si Me_2). Anal. Calc. For $C_{24}H_{37}ClN_4Si$ (445.12): C, 64.76; H, 8.38; N, 12.59. Found: C, 64.21; H, 8.13; N, 12.71%.

2.2.3. $[({}^{t}Bu)NHC(Ph)N]Ti(thf)_{2}Cl_{3}$ (3)

TiCl₄(thf)₂ (0.59 g, 1.77 mmol) was added to a stirred solution of **1** (0.72 g, 1.77 mmol) in CH₂Cl₂ (ca 30 mL) at 0 °C. The reaction mixture was warmed to room temperature and kept stirring overnight. The resulting solution was filtered and the filtrate was concentrated to yield red crystals of **3**. Yield: 0.41 g (49%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.88 (d, J_{HH} = 7.2 Hz, 2H; 2,6-H of phenyl), 7.54–7.45 (m, 3H; 3,4,5-H of phenyl), 6.68 (s, 1H; NH–C–N), 3.93 (t, J_{HH} = 6.3 Hz, 8H; OCH₂ of thf), 1.86 (p, J_{HH} = 3.3 Hz, 8H; 3,4-2CH₂ of thf), 1.72 (s, 9H; CMe₃). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 160.8 (N–C–N), 135.5–129.1 (phenyl), 70.9 (OCH₂ of thf), 26.3 (3,4-2CH₂ of thf), 57.1 (CMe₃), 30.1 (CMe₃). Anal. Calc. For C₁₉H₃₁Cl₃N₂O₂Ti (473.71): C, 48.18; H, 6.60; N, 5.91. Found: C, 48.29; H, 6.63; N, 5.82%.

2.2.4. $[({}^{t}Bu)NHC(Ph)NH]SiMe_{2}[NC(Ph)N({}^{t}Bu)]ZrCl_{4}$ (4)

ZrCl₄ (0.29 g, 1.25 mmol) was added to a stirred solution of **1** (0.51 g, 1.25 mmol) in THF (ca 20 mL) at 0 °C. The reaction mixture was warmed to room temperature and kept stirring overnight. The resulting solution was dried in vacuum and the residue was extracted with CH₂Cl₂. The filtrate was concentrated to yield colorless crystals of **4**. Yield: 0.57 g (71%). *Anal.* Calc. For C₂₄H₃₆Cl₄N₄SiZr (641.68): C, 44.92; H, 5.65; N, 8.73. Found: C, 44.68; H, 5.52; N, 8.52%.

2.2.5. $\{SiMe_2[N(H)C(Ph)N(^tBu)]_2\}HfCl_4$ (**5**)

HfCl₄ (0.64 g, 1.97 mmol) was added to a stirred solution of **1** (0.81 g, 1.97 mmol) in CH₂Cl₂ (ca 30 mL) at 0 °C. The reaction mixture was warmed to room temperature and kept stirring overnight. The resulting solution was filtered and the filtrate was concentrated to yield colorless crystals of **5**. Yield: 1.18 g (81%). 1 H NMR (300 MHz, CDCl₃) δ (ppm): 8.68 (s, 2H; NH–C–N), 7.44–7.27 (m, 10H; phenyls), 1.16 (s, 18H; 2CMe₃), -0.46 (s, 6H; SiMe₂). 13 C NMR (75 MHz, CDCl₃) δ (ppm): 172.1 (N–C–N), 134.2–128.8 (phenyls), 56.8 (CMe₃), 31.7 (CMe₃), 2.7 (SiMe₂). Anal. Calc. For C₂₄H₃₆Cl₄N₄SiHf (728.96): C, 39.54; H, 4.98; N, 7.69. Found: C, 39.78; H, 5.02; N, 7.79%.

2.2.6. $\{SiMe_2[NC(Ph)NH(^tBu)]_2Ti[NC(Ph)NH_2(^tBu)]Cl_3\}Cl_1(C_7H_8)$ (**6**)

To a stirred solution of **1** (0.39 g, 0.94 mmol) in toluene (ca 30 mL), TiCl₄(thf)₂ (0.31 g, 0.94 mmol) was added at 0 °C. The reaction mixture was warmed to room temperature and kept stirring overnight whereupon the color changed from yellow to red. The resulting solution was filtered and the filtrate was concentrated to yield orange crystals of **6**. Yield: 0.43 g (53%). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.87, 8.18 (d, 4H; ¹BuNH), 7.48–6.88 (m, 20H; phenyls), 2.36 (s, 3H; *Me* of toluene), 1.82–0.97 (m, 27H; *CMe*₃), –0.49 (s, 6H; SiMe₂). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 168.9 (N–C–N), 138.8–126.2 (phenyl), 54.6 (*CMe*₃), 32.3–30.8 (*CMe*₃), 22.3 (*Me* of toluene), 3.3 (SiMe₂). *Anal.* Calc. For C₃₅H₅₂Cl₄N₆SiTi·(C₇H₈) (866.75): C, 58.20; H, 6.98; N, 9.70. Found: C, 58.49; H, 7.09; N, 9.55%.

2.2.7. $SiMe_2[NC(Ph)NH(^tBu)]_2ZrCl_4\cdot(C_7H_8)$ (7)

Compound **7** could be obtained by recrystallization of **4** in toluene or by the following reaction. ZrCl₄ (0.41 g, 1.76 mmol) was

Download English Version:

https://daneshyari.com/en/article/1336783

Download Persian Version:

https://daneshyari.com/article/1336783

<u>Daneshyari.com</u>