#### Polyhedron 101 (2015) 103-108



# Polyhedron

journal homepage: www.elsevier.com/locate/poly

## Thermolysis of $Ru_3(CO)_{10}(\mu$ -dppm) and $Ru_3(CO)_9(PRPh_2)(\mu$ -dppm) (R = Ph, H) in presence of O<sub>2</sub>: Synthesis and structure of triruthenium clusters containing a capping-oxo ligand



POLYHEDRON

Md. Mehedi M. Khan<sup>a</sup>, Md. Faruque Ahmad<sup>a</sup>, Subas Rajbangshi<sup>a</sup>, Tasneem A. Siddiquee<sup>b</sup>, Shishir Ghosh<sup>a</sup>, Shariff E. Kabir<sup>a,\*</sup>

<sup>a</sup> Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
<sup>b</sup> Department of Chemistry, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN 37209, USA

#### ARTICLE INFO

Article history: Received 9 June 2015 Accepted 7 July 2015 Available online 11 July 2015

Keywords: Triruthenium clusters Oxo-capped clusters Carbonyls C-P, P-H and C-H bond activation X-ray structures

#### ABSTRACT

Thermolysis of Ru<sub>3</sub>(CO)<sub>10</sub>( $\mu$ -dppm) [dppm = bis(diphenylphosphino)methane] in boiling xylene in presence of molecular oxygen (O<sub>2</sub>) affords the trinuclear oxo-capped cluster Ru<sub>3</sub>(CO)<sub>7</sub>( $\mu_3$ -CO)( $\mu_3$ -O)( $\mu$ -dppm) (**1**). A similar reaction between Ru<sub>3</sub>(CO)<sub>9</sub>(PPh<sub>3</sub>)( $\mu$ -dppm) and O<sub>2</sub> in refluxing benzene also furnishes the oxo-capped Ru<sub>3</sub>(CO)<sub>6</sub>(PPh<sub>3</sub>)( $\mu_3$ -CO)( $\mu_3$ -O)( $\mu$ -dppm) (**2**). Crystal structures of **1** and **2** reveal that both contain a capping oxygen at one face and a triply-bridging carbonyl on the opposite face of the triruthenium plane. In contrast, Ru<sub>3</sub>(CO)<sub>9</sub>(PHPh<sub>2</sub>)( $\mu$ -dppm) does not react with O<sub>2</sub> under similar conditions, but undergoes thermal transformations to give Ru<sub>3</sub>(CO)<sub>7</sub>( $\mu$ -H)( $\mu$ -PPh<sub>2</sub>){ $\mu_3$ -PhPCH<sub>2</sub>P(C<sub>6</sub>H<sub>4</sub>)Ph} (**3**) and Ru<sub>3</sub>(CO)<sub>6</sub>( $\mu$ -CO)( $\mu$ -PPh<sub>2</sub>)<sub>2</sub>( $\mu_3$ -CH<sub>2</sub>PPh)] (**4**) via C–P, P–H and C–H bond activation. All the new clusters have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.

© 2015 Elsevier Ltd. All rights reserved.

### 1. Introduction

It has been known for some years that zero-valent triruthenium clusters react with elemental sulfur and its heavier congeners to afford chalcogenide-capped clusters [1-4]. In 1979, Johnson and co-workers synthesized Ru<sub>3</sub>(CO)<sub>9</sub>( $\mu$ <sub>3</sub>-X)<sub>2</sub> and Ru<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -H)<sub>2</sub>( $\mu$ <sub>3</sub>-X) from the reaction of Ru<sub>3</sub>(CO)<sub>12</sub> with X<sub>n</sub> (X = S, Se, Te) in presence of CO [3]. In contrast, Ru<sub>3</sub>(CO)<sub>12</sub> does not react with molecular oxygen (O<sub>2</sub>) to afford oxo-capped cluster since the triruthenium core is not electron-rich enough to undergo oxidation. One way to increase the electron-richness of the trinuclear core is the substitution of carbonyl(s) by more electron-donating phosphines and the phosphine-substituted derivatives of Ru<sub>3</sub>(CO)<sub>12</sub> such as Ru<sub>3</sub>(CO)<sub>9</sub>{P(C<sub>4</sub>H<sub>3</sub>S)<sub>3</sub>}( $\mu$ -dppm), Ru<sub>3</sub>(CO)<sub>8</sub>( $\mu$ -dppm)<sub>2</sub> and Ru<sub>3</sub>(CO)<sub>6</sub>( $\mu$ -dppm)<sub>3</sub> have been found to react with O<sub>2</sub> which lead to the formation of oxo-capped clusters (Chart 1) [4–6].

A literature review in this field shows that at least three carbonyls have to be replaced by phosphines from  $Ru_3(CO)_{12}$  in order to make it reactive towards  $O_2$  that leads to the formation of oxocapped cluster [4–6]. In the present work, we have investigated this area further and found that bis(phosphine) substituted cluster  $Ru_3(CO)_{10}(\mu$ -dppm) also reacts with  $O_2$  to afford oxo-capped cluster, but only at more drastic conditions. The possibility of side reactions when the incorporated phosphine (e.g., diphenylphosphine) is vulnerable to thermal transformation on cluster surface at moderate temperatures have also been examined.

#### 2. Results and discussion

2.1. Reactions of  $Ru_3(CO)_{10}(\mu$ -dppm) and  $Ru_3(CO)_9(PPh_3)(\mu$ -dppm) with  $O_2$  – Synthesis of oxo-capped clusters  $Ru_3(CO)_7(\mu_3$ -CO)( $\mu_3$ -O) ( $\mu$ -dppm) (1) and  $Ru_3(CO)_6(PPh_3)(\mu_3$ -CO)( $\mu_3$ -O)( $\mu$ -dppm) (2)

High temperature reaction between  $\text{Ru}_3(\text{CO})_{10}(\mu\text{-dppm})$  and  $O_2$ in boiling xylene led to the formation of oxo-capped cluster  $\text{Ru}_3(\text{CO})_7(\mu_3\text{-CO})(\mu_3\text{-O})(\mu\text{-dppm})$  (**1**) in 13% yield (Scheme 1). In contrast,  $\text{Ru}_3(\text{CO})_9(\text{PPh}_3)(\mu\text{-dppm})$  afforded the oxo-capped cluster  $\text{Ru}_3(\text{CO})_6(\text{PPh}_3)(\mu_3\text{-CO})(\mu\text{-dppm})$  (**2**) in 18% yield from a similar reaction with  $O_2$  in boiling benzene (Scheme 1). In these reactions face-capping with the oxo-ligand would lead to some level of oxidation of the ruthenium atoms in the resultant clusters. Since the triruthenium core in  $\text{Ru}_3(\text{CO})_9(\text{PPh}_3)(\mu\text{-dppm})$  is more basic than that in  $\text{Ru}_3(\text{CO})_{10}(\mu\text{-dppm})$ , oxo-capping of the former is expected to be easier than the later. This is evident by the relatively low temperature required in the reaction of  $O_2$  with



<sup>\*</sup> Corresponding author. Tel.: +880 27791099; fax: +880 27791052. E-mail address: skabir\_ju@yahoo.com (S.E. Kabir).



Chart 1. Examples of oxo-capped triruthenium carbonyl cluster.



Scheme 1. Thermolysis of Ru<sub>3</sub>(CO)<sub>10</sub>(µ-dppm) and Ru<sub>3</sub>(CO)<sub>9</sub>(PPh<sub>3</sub>)(µ-dppm) in presence of O<sub>2</sub>.

 $Ru_3(CO)_9(PPh_3)(\mu$ -dppm) compared to that with  $Ru_3(CO)_{10}$  ( $\mu$ -dppm). Both the new oxo-capped clusters have been adequately characterized in solution by IR, <sup>1</sup>H NMR and <sup>31</sup>P{<sup>1</sup>H} NMR spectroscopic data and in the solid-state by single crystal X-ray diffraction analysis.

The solid-state molecular structures of **1** and **2** are depicted in Figs. 1 and 2, respectively, with the captions containing selected bond distances and angles. Both clusters contain a triruthenium core capped with a triply bridging oxo-ligand on one face and a triply bridging carbonyl ligand on the opposite face. They are structurally very similar to the related clusters  $Ru_3(CO)_6$  {P(C<sub>4</sub>H<sub>3</sub>S)<sub>3</sub>( $\mu_3$ -CO)( $\mu_3$ -O)( $\mu$ -dppm) (**A**) [4] and  $Ru_3(CO)_5(\mu_3$ -CO)( $\mu_3$ -O)( $\mu$ -dppm) and  $Ru_3(CO)_8(\mu$ -dpam)<sub>2</sub> with molecular oxygen respectively. Ruthenium–ruthenium distances in **1** 



**Fig. 1.** The solid-state molecular structure of  $Ru_3(CO)_7(\mu_3-CO)(\mu_3-O)(\mu-dppm)$  (1) showing 50% probability thermal ellipsoid. Hydrogen atoms were omitted for clarity. Selected bond lengths (Å) and angles (°): Ru(1)-Ru(2) 2.7302(7), Ru(1)-Ru(3) 2.7238(7), Ru(2)-Ru(3) 2.7084(7), Ru(1)-P(1) 2.3358(16), Ru(2)-P(2) 2.3310(17), Ru(1)-O(10) 2.059(4), Ru(2)-O(10) 2.055(4), Ru(3)-O(10) 2.047(4), Ru(1)-C(6) 2.158(6), Ru(2)-C(6) 2.131(6), Ru(3)-C(6) 2.228(7), Ru(3)-Ru(1)-Ru(2) 59.548(19), Ru(3)-Ru(2)-Ru(1) 60.107(18), Ru(2)-Ru(3)-Ru(1) 60.345(18), Ru(3)-O(10)-Ru(1) 63.17(16), Ru(2)-C(6)-Ru(1) 79.1(2), Ru(2)-C(6)-Ru(3) 76.8(2), Ru(1)-C(6)-Ru(3) 76.8(2), P(2)-C(1)-P(1) 109.2(3).



**Fig. 2.** The solid-state molecular structure of  $Ru_3(CO)_6(PPh_3)(\mu_3-CO)(\mu_3-O)(\mu_4ppm)$  (**2**) showing 50% probability thermal ellipsoid. Hydrogen atoms were omitted for clarity. Selected bond lengths (Å) and angles (°): Ru(1)-Ru(2) 2.7218(5), Ru(1)-Ru(3) 2.7501(5), Ru(2)-Ru(3) 2.7415(5), Ru(1)-P(1) 2.3229(10), Ru(2)-P(3) 2.3595(10), Ru(3)-P(2) 2.3607(10), Ru(1)-O(2) 2.037(2), Ru(2)-O(2) 2.049(2), Ru(3)-O(2) 2.066(2), Ru(3)-C(1) 2.132(4) Ru(1)-C(1) 2.170(4), Ru(2)-C(1) 2.178(4); Ru(2)-Ru(1)-Ru(3) 60.132(13), Ru(1)-Ru(2)-Ru(3) 60.447(12), Ru(2)-Ru(3) -Ru(1) 59.421(13), Ru(1)-O(2)-Ru(2) 83.53(8), Ru(1)-O(2)-Ru(3) 84.18(9), Ru(2)-O(2)-Ru(3) 83.55(9), Ru(3)-C(1)-Ru(1) 79.46(13), Ru(3)-C(1)-Ru(2) 78.98(13), Ru(1)-C(1)-Ru(2) 77.50(12).

[Ru-Ru 2.7084(7)-2.7302(7)Å] and 2 [Ru-Ru 2.7218(5)-2.7501(5)Å] are comparable to those found in related oxo-capped clusters **A** [Ru-Ru 2.7069(5)-2.7462(5)Å] [4] and **B** [Ru-Ru 2.670(2)–2.750(2) Å] [5], but are significantly shorter than those observed in the parent clusters Ru<sub>3</sub>(CO)<sub>8</sub>(µ-dppm) [Ru-Ru 2.834(1)–2.860(1)Å] [7] and  $Ru_3(CO)_9(PPh_3)(\mu-dppm)$  [Ru–Ru 2.8523(3)–2.8938(3) Å] [8] which indicate some level of oxidation of the ruthenium atoms in both 1 and 2. The ruthenium-oxygen bond distances in both of them [Ru-O 2.047(4)-2.059(4) Å (in 1) and 2.037(2)-2.066(2) Å (in 2)] are also comparable to those found in related A and B [Ru-O 2.051(3)-2.057(3) Å (in A) and 2.06(1)-2.11(1) Å (in 2)] [4,5]. In addition, all three Ru–O bond lengths are almost similar within the experimental error in both 1 and 2. This suggests that they may have delocalized electronic states with an averaged ruthenium oxidation number. In order to check this assumption, we compare the ruthenium-oxygen bond distances

Download English Version:

https://daneshyari.com/en/article/1336821

Download Persian Version:

https://daneshyari.com/article/1336821

Daneshyari.com