

Contents lists available at SciVerse ScienceDirect

### Polyhedron

journal homepage: www.elsevier.com/locate/poly



# Iron(II) complexes of 2,6-di(1-alkylpyrazol-3-yl)pyridine derivatives – The influence of distal substituents on the spin state of the iron centre

Thomas D. Roberts <sup>a</sup>, Marc A. Little <sup>a,b</sup>, Laurence J. Kershaw Cook <sup>a</sup>, Simon A. Barrett <sup>a</sup>, Floriana Tuna <sup>c</sup>, Malcolm A. Halcrow <sup>a,\*</sup>

#### ARTICLE INFO

## Article history: Available online 19 February 2013

Dedicated to George Christou on the occasion of his 60th birthday.

Keywords: Iron N-donor ligands Crystal structure Magnetic measurements Spin-crossover

#### ABSTRACT

2,6-Di(1-methyl-pyrazol-3-yl)pyridine ( $L^{Me}$ ), 2,6-di(1-allyl-pyrazol-3-yl)pyridine ( $L^{All}$ ), 2,6-di(1-benzyl-pyrazol-3-yl)pyridine ( $L^{Bz}$ ) and di(1-isopropyl-pyrazol-3-yl)pyridine ( $L^{iPr}$ ) have been synthesized by alkylation of deprotonated di{1H-pyrazol-3-yl}pyridine (3-bpp), and converted to salts of the corresponding [Fe( $L^{Ne}$ )<sub>2</sub>]<sup>2+</sup> complexes (R = Me, All, Bz and iPr). Crystal structures of [Fe( $L^{Me}$ )<sub>2</sub>] $X_2$  ( $X^-$  =  $BF_4^-$ ,  $ClO_4^-$  and  $PF_6^-$ ), [Fe( $L^{All}$ )<sub>2</sub>][ $BF_4$ ]<sub>2</sub>, [Fe( $L^{Bz}$ )<sub>2</sub>][ $BF_4$ ]<sub>2</sub> and [Fe( $L^{iPr}$ )<sub>2</sub>][ $PF_6$ ]<sub>2</sub> have been determined at 150 K. All of these contain high-spin iron centres except [Fe( $L^{Me}$ )<sub>2</sub>][ $BF_4$ ]<sub>2</sub>·xH<sub>2</sub>O, which is predominantly low-spin at that temperature. All the complexes are high-spin between 5 and 300 K as solvent-free bulk powders, and are also high-spin in ( $CD_3$ )<sub>2</sub>CO solution between 193 and 293 K. This was unexpected, since the parent complex [Fe(3-bpp)<sub>2</sub>]<sup>2+</sup> undergoes spin-crossover in the same solvent with  $T_{1/2}$  = 247 K [40]. The high-spin nature of the [Fe( $L^{R}$ )<sub>2</sub>]<sup>2+</sup> complexes in solution must reflect a subtle balance of steric and electronic factors involving the ligand 'R' substituents.

 $\ensuremath{\text{@}}$  2013 Elsevier Ltd. All rights reserved.

#### 1. Introduction

The chemistry of spin-crossover complexes [1–3] continues to be heavily studied, because of their potential applications as switchable components in memory and display devices [4], in nanoscience [2] and in MRI contrast agents [5]. A class of compound that has been heavily used in spin-crossover research during the past ten years are iron(II) complexes of the isomeric 2,6-di(pyrazolyl)pyridine ligands, 1-bpp and 3-bpp (Scheme 1) [6,7]. The 1-bpp ligand framework can be substituted at every position of its pyrazole and pyridine rings [7]. Substitution at the pyridine ring allows functional groups to be included at the periphery of the [Fe(1-bpp)<sub>2</sub>]<sup>2+</sup> centre without significantly perturbing the iron centre. This approach has afforded multifunctional spincrossover complexes [8], coordination polymers of [Fe(1-bpp)<sub>2</sub>]<sup>2+</sup> centres [9], and complexes with tether groups for deposition on surfaces [10]. In contrast, substituents at the pyrazole groups allow for steric and electronic control of the spin-state properties of a [Fe(1-bpp)<sub>2</sub>]<sup>2+</sup> complex, so its spin-crossover properties can be modified in a rational way [7]. The synthetic versatility of  $[Fe(1-bpp)_2]^{2+}$  is unique among the commonly used compounds in the field of spin-crossover.

The coordination chemistry of substituted 3-bpp derivatives is less developed by comparison, because of the poorer availability of suitable synthetic precursors. 3-bpp ligands derivatised at *N*1 and *C*5 of the pyrazole rings are well-established, and have been employed in luminescent complexes [11–13], in catalysis [14–16], in hydrometallurgical applications [17] and in self-assembly reactions [18,19]. However, although [Fe(3-bpp)<sub>2</sub>]<sup>2+</sup> itself is a versatile spin-crossover compound [6], the application of substituted 3-bpp ligands to spin-crossover chemistry has only recently been investigated, by us [20] and by Aromí co-workers [21].

We describe here the first investigation of iron complexes of 3-bpp derivatives that are disubstituted at the pyrazole *N*1 positions. These are analogues of 1-bpp ligands bearing substituents at the pyrazole *C*3 sites, where the pyrazole substitutents are known to have a strong bearing on the spin-state properties of a coordinated iron centre [6]. Four 3-bpp derivatives have been investigated in this work: 2,6-di(1-methylpyrazol-3-yl)pyridine (L<sup>Me</sup>), 2,6-di(1-allylpyrazol-3-yl)pyridine (L<sup>Bz</sup>) and 2,6-di(1-isopropylpyrazol-3-yl)pyridine (L<sup>Pr</sup>) (Scheme 1). Some noble metal complexes of L<sup>Me</sup> [13] and L<sup>All</sup> [16] have been reported before but their iron complexes have not yet been investigated, while L<sup>Bz</sup> and L<sup>iPr</sup> are new ligands to our knowledge. We were particularly interested in salts of [Fe(L<sup>Me</sup>)<sub>2</sub>]<sup>2+</sup> since the Fe[BF<sub>4</sub>]<sub>2</sub> complex of the equivalent 1-bpp derivative, 2,6-di(3-methylpyrazol-1-yl)pyridine (Me<sub>2</sub>-1-bpp),

<sup>&</sup>lt;sup>a</sup> School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK

<sup>&</sup>lt;sup>b</sup> Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK

<sup>&</sup>lt;sup>c</sup> School of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK

<sup>\*</sup> Corresponding author. Fax: +44 113 343 6565.

E-mail address: M.A.Halcrow@leeds.ac.uk (M.A. Halcrow).

exhibits an unusually low thermal spin-transition temperature for a complex of this type which leads to unique light-induced spin-crossover properties [22]. We were therefore keen to see whether salts of  $[{\rm Fe}({\rm L^{Me}})_2]^{2+}$  exhibit comparable effects.

#### 2. Experimental

Unless otherwise stated, all manipulations were carried out in air using reagent-grade solvents. 2,6-Di(pyrazol-3-yl)pyridine (3-bpp) [23], 2,6-di(1-methylpyrazol-3-yl)pyridine ( $L^{Me}$ ) [13] and 2,6-di(1-allylpyrazol-3-yl)pyridine ( $L^{All}$ ) [16] were prepared by literature methods, while all other reagents and solvents were used as supplied.

#### 2.1. Synthesis of 2,6-di(1-benzylpyrazol-3-yl)pyridine ( $L^{Bz}$ )

2,6-Bis(pyrazol-3-yl)pyridine (2.00~g, 9.5~mmol) and lithium hydride (0.22~g, 28.4~mmol) were suspended in dry THF, in the pres-

 $\begin{tabular}{ll} \textbf{Table 1} \\ \textbf{Experimental details for the single crystal structure determinations in this work.} \\ \end{tabular}$ 

ence of benzyl bromide (4.86 g, 28.4 mmol). The mixture was then heated at reflux for 44 h under a nitrogen atmosphere. The resultant white precipitate was removed via filtration and washed with water. The solid was then recrystallised from chloroform and dried in vacuo. Yield 1.67 g, 45%. El HR mass spectrum: m/z 391.1795 ([LBz]+; calcd for C25H21N5 m/z 391.1797).  $^1\mathrm{H}$  NMR (CDCl3)  $\delta5.31$  (br s, 4H, CH2), 7.01 (br s, 2H, Pz  $H^4$ ), 7.18–7.38 (br m, 10H, C6H5), 7.40 (d, 2.3 Hz, 2H, Pz  $H^5$ -), 7.75 (t, 7.5 Hz, 1H, Py  $H^4$ ), 7.86 (br s, 2H, Py  $H^3/5$ ).  $^{13}\mathrm{C}\{^1\mathrm{H}\}$  NMR (CDCl3):  $\delta56.2$  (2C, CH2), 105.2 (2C, Pz  $C^4$ ), 118.6 (2C, Py  $C^3/5$ ), 127.5 (Ph  $C^2/6$ ), 128.0 (Ph  $C^3/5$ ), 128.8 (Ph  $C^4$ ), 130.9 (2C, Pz  $C^5$ ), 136.4 (2C, Ph  $C^1$ ), 137.3 (1C, Py  $C^4$ ), 151.7 and 152.0 (both 2C, Py  $C^{2/6}$  and Pz  $C^3$ ).

#### 2.2. Synthesis of 2.6-di(1-isopropylpyrazol-3-yl)pyridine (LiPr)

The same method as described for L<sup>Bz</sup> was followed, using 2-iodopropane (4.83 g, 28.4 mmol). After 72 h at reflux under a nitrogen atmosphere, the resultant white precipitate was collected, washed with water and dried *in vacuo*. The product was employed without further purification. Yield 2.67 g, 95%. EI HR mass spectrum: m/z 296.1874 ([HL<sup>iPt</sup>]\*; calcd for C<sub>17</sub>H<sub>22</sub>N<sub>5</sub> m/z 296.1870). <sup>1</sup>H NMR ({CD<sub>3</sub>}SO) δ1.47 (d, 6.6 Hz, 12H, CH{CH<sub>3</sub>}<sub>2</sub>), 4.57 (sept, 6.6 Hz, 2H, CH{CH<sub>3</sub>}<sub>2</sub>), 6.92 (d, 2.1 Hz, 2H, Pz  $H^4$ ), 7.83 (s, 2H, Pz  $H^5$ ), 7.84 (s, 3H, Py  $H^{3-5}$ ). <sup>13</sup>C{<sup>1</sup>H} NMR ({CD<sub>3</sub>}SO): δ22.2 (4C, CH{CH<sub>3</sub>}<sub>2</sub>), 54.3 (2C, CH{CH<sub>3</sub>}<sub>2</sub>), 104.0 (2C, Pz  $C^4$ ), 119.3 (2C, Py  $C^{3/5}$ ), 128.9 (2C, Pz  $C^5$ ), 139.0 (1C, Py  $C^4$ ), 149.6 and 151.0 (both 2C, Py  $C^{2/6}$  and Pz  $C^3$ ).

#### 2.3. Synthesis of the complexes

The same basic method, as described here for  $1[BF_4]_2$ , was followed for all the complexes in this study. Iron(II) tetrafluoroborate hexahydrate (0.14 g, 0.4 mmol) was added to a stirred solution of  $L^{Me}$  (0.20 g, 0.8 mmol) in nitromethane (15 mL) and the resulting yellow solution was stirred for a further 30 min. Diethyl ether was then added until a yellow precipitate formed which was collected via filtration. The product was then recrystallised from methanol/diethyl ether to give a yellow crystalline solid. The same method, using the equivalent quantities of the appropriate ligand and metal salt, yielded the other complexes. Recrystallised yields ranged from 38% to 70%. *Caution!* Although we have experienced

|                                                                    | $1[\mathbf{BF_4}]_{2} \cdot x \mathbf{H}_2 \mathbf{O}$                            | $1[ClO_4]_2$                                                                     | $1[PF_{6}]_{2}$                                                                  | $2[BF_4]_2$                                                                     | $3[BF_4]_2$                                                                     | <b>4</b> [ <b>PF</b> <sub>6</sub> ] <sub>2</sub> ·2CH <sub>3</sub> CN            |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Formula                                                            | C <sub>26</sub> H <sub>28</sub> B <sub>2</sub> F <sub>8</sub> FeN <sub>10</sub> O | C <sub>26</sub> H <sub>26</sub> Cl <sub>2</sub> FeN <sub>10</sub> O <sub>8</sub> | C <sub>26</sub> H <sub>26</sub> F <sub>12</sub> FeN <sub>10</sub> P <sub>2</sub> | C <sub>34</sub> H <sub>34</sub> B <sub>2</sub> F <sub>8</sub> FeN <sub>10</sub> | C <sub>50</sub> H <sub>42</sub> B <sub>2</sub> F <sub>8</sub> FeN <sub>10</sub> | C <sub>38</sub> H <sub>48</sub> F <sub>12</sub> FeN <sub>12</sub> P <sub>2</sub> |
| $M_{\rm r}$                                                        | 726.05                                                                            | 733.32                                                                           | 824.36                                                                           | 812.18                                                                          | 1012.41                                                                         | 1018.67                                                                          |
| Crystal system                                                     | monoclinic                                                                        | trigonal                                                                         | monoclinic                                                                       | cubic                                                                           | orthorhombic                                                                    | monoclinic                                                                       |
| Space group                                                        | C2/c                                                                              | R32                                                                              | C2/c                                                                             | I43d                                                                            | Pbca                                                                            | $P2_1/n$                                                                         |
| a (Å)                                                              | 17.1632(16)                                                                       | 18.6378(12)                                                                      | 34.124(3)                                                                        | 22.8650(18)                                                                     | 15.4334(17)                                                                     | 20.494(2)                                                                        |
| b (Å)                                                              | 20.9906(19)                                                                       | - ' '                                                                            | 12.3128(11)                                                                      | - ' '                                                                           | 14.0656(17)                                                                     | 23.257(3)                                                                        |
| c (Å)                                                              | 19.1771(17)                                                                       | 24.3461(14)                                                                      | 17.6817(17)                                                                      | _                                                                               | 43.884(5)                                                                       | 20.609(2)                                                                        |
| β (°)                                                              | 96.605(5)                                                                         | - ' '                                                                            | 114.441(6)                                                                       | _                                                                               | - ' '                                                                           | 101.271(6)                                                                       |
| $V(Å^3)$                                                           | 6863.0(11)                                                                        | 7324.0(8)                                                                        | 6763.4(11)                                                                       | 11954.0(16)                                                                     | 9526.3(19)                                                                      | 9633.3(19)                                                                       |
| Z                                                                  | 8                                                                                 | 9                                                                                | 8                                                                                | 12                                                                              | 8                                                                               | 8                                                                                |
| T (K)                                                              | 150(2)                                                                            | 150(2)                                                                           | 150(2)                                                                           | 150(2)                                                                          | 150(2)                                                                          | 150(2)                                                                           |
| $\rho_{\rm calc}$ (g cm <sup>-3</sup> )                            | 1.405                                                                             | 1.496                                                                            | 1.619                                                                            | 1.354                                                                           | 1.412                                                                           | 1.405                                                                            |
| $\mu$ (mm <sup>-1</sup> )                                          | 0.520                                                                             | 0.690                                                                            | 0.643                                                                            | 0.454                                                                           | 0.396                                                                           | 0.468                                                                            |
| Measured reflections                                               | 37795                                                                             | 23 056                                                                           | 62 406                                                                           | 87527                                                                           | 162266                                                                          | 524427                                                                           |
| Independent reflections                                            | 6723                                                                              | 4972                                                                             | 10895                                                                            | 2127                                                                            | 11794                                                                           | 23 521                                                                           |
| R <sub>int</sub>                                                   | 0.056                                                                             | 0.030                                                                            | 0.082                                                                            | 0.041                                                                           | 0.049                                                                           | 0.047                                                                            |
| Observed reflections $[I > 2\sigma(I)]$                            | 4552                                                                              | 4218                                                                             | 7634                                                                             | 1847                                                                            | 9529                                                                            | 17909                                                                            |
| Data, restraints, parameters                                       | 6723, 40, 460                                                                     | 4972, 14, 216                                                                    | 10895, 0, 464                                                                    | 2127, 25, 162                                                                   | 11794, 0, 640                                                                   | 23 521, 102, 1282                                                                |
| $R_1(I > 2\sigma(I))^a$ , $wR_2(\text{all data})^b$                | 0.085, 0.297                                                                      | 0.061, 0.171                                                                     | 0.048, 0.132                                                                     | 0.048, 0.136                                                                    | 0.045, 0.127                                                                    | 0.063, 0.188                                                                     |
| GOF                                                                | 1.041                                                                             | 1.058                                                                            | 1.023                                                                            | 1.108                                                                           | 1.024                                                                           | 1.100                                                                            |
| $\Delta  ho_{ m min}$ , $\Delta  ho_{ m max}$ (e Å <sup>-3</sup> ) | -0.58, 1.05                                                                       | -0.55, 0.68                                                                      | -0.62, 0.78                                                                      | -0.21, 0.36                                                                     | -0.76, 1.00                                                                     | -0.74, 0.94                                                                      |
| Flack parameter                                                    | -                                                                                 | 0.00(3)                                                                          | _                                                                                | -0.02(3)                                                                        | _                                                                               | -                                                                                |

<sup>&</sup>lt;sup>a</sup>  $R = \Sigma[|F_0| - |F_c|]/\Sigma|F_0$ .

b  $WR = [\Sigma W(F_0^2 - F_c^2)^2 / \Sigma W F_0^4]^{1/2}$ .

#### Download English Version:

## https://daneshyari.com/en/article/1337016

Download Persian Version:

https://daneshyari.com/article/1337016

<u>Daneshyari.com</u>