Polyhedron 28 (2009) 3607-3613

ELSEVIER

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Nina Gómez-Blanco^a, Jesús J. Fernández^{a,*}, Alberto Fernández^a, Digna Vázquez-García^a, Margarita López-Torres^a, Antonio Rodríguez^a, José M. Vila^{b,*}

^a Departamento de Química Fundamental, Universidad de La Coruña, E-15071 La Coruña, Spain

^b Departamento de Química Inorgánica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain

ARTICLE INFO

Article history: Received 17 May 2009 Accepted 17 July 2009 Available online 6 August 2009

Keywords: Cyclometallation Heterocycle Palladium Crystal structure

ABSTRACT

Reaction of the Schiff base ligand derived from 4-pyridinecarboxaldehyde $NC_5H_4C(H)=N[2',4',6'-(CH_3)C_6H_2]$, (1), with palladium(II) acetate in toluene at 60 °C for 24 h gave $[Pd\{NC_5H_4C(H)=N[2',4',6'-(CH_3)C_6H_2]\}_2(OCOCH_3)_2]$, (2), with two ligands coordinated through the pyridine nitrogen. Treatment of the Schiff base ligand derived from 4-pyridinecarboxaldehyde *N*-oxide, 4-(O)NC₅H₄C(H)= $N[2',4',6'-(CH_3)C_6H_2]$, (4), with palladium(II) acetate in toluene at 75 °C gave the dinuclear acetato-bridged complex $[Pd\{4-(O)NC_5H_3C(H)=N[2',4',6'-(CH_3)C_6H_2]\}(OCOCH_3)]_2$, (5) with metallation of an aromatic phenyl carbon. Reaction of complex **5** with sodium chloride or lithium bromide gave the dinuclear halogen-bridged complexs $[Pd\{4-(O)NC_5H_3C(H)=N[2',4',6'-(CH_3)C_6H_2]\}(CI)]_2$, (6) and $[Pd\{4-(O)NC_5H_3C(H)=N[2',4',6'-(CH_3)C_6H_2]\}(CI)]_2$, (7), after the metathesis reaction. Reaction of **6** and **7** with riphenylphosphine gave the mononuclear species $[Pd\{4-(O)NC_5H_3C(H)=N[2',4',6'-(CH_3)C_6H_2]\}(CI)(PPh_3)]$, (8) and $[Pd\{4-(O)NC_5H_3C(H)=N[2',4',6'-(CH_3)C_6H_2]\}(CI)(PPh_3)]$, (8) and $[Pd\{4-(O)NC_5H_3C(H)=N[2',4',6'-(CH_3)C_6H_2]\}(CI)(PPh_3)]$, (8) and $[Pd\{4-(O)NC_5H_3C(H)=N[2',4',6'-(CH_3)C_6H_2]\}(CI)(PPh_3)]$, (9), as air stable solids. Treatment of **6** and **7** with $Ph_2P(CH_2)_2PPh_2$ (dppe) in a complex/diphosphine 1:2 molar ratio gave the mononuclear complexes $[Pd\{4-(O)NC_5H_3C(H)=N[2',4',6'-(CH_3)C_6H_2]\}(PPh_2(CH_2)_2PPh_2)][CI]$, (10), and $[Pd\{4-(O)NC_5H_3C(H)=N[2',4',6'-(CH_3)C_6H_2]\}(PPh_2(CH_2)_2PPh_2)][CI]$, (10), and $[Pd\{4-(O)NC_5H_3C(H)=N[2',4',6'-(CH_3)C_6H_2]\}(PPh_2(CH_2)_2PPh_2)][CI]$, (10), and $[Pd\{4-(O)NC_5H_3C(H)=N[2',4',6'-(CH_3)C_6H_2]\}(PPh_2(CH_2)_2PPh_2)][CI]$, (10), and $[Pd\{4-(O)NC_5H_3C(H)=N[2',4',6'-(CH_3)C_6H_2]](PPh_2(CH_2)_2PPh_2)][CI]$, (10), and $[Pd\{4-(O)NC_5H_3C(H)=N[2',4',6'-(CH_3)C_6H_2]](PPh_2(CH_2)_2PPh_2)][PF_6]$, (11), with a chelating diphosphine. The molecular structure of complex **9** was determined by X-ray single crystal diffraction ana

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The chemistry of cyclometallated transition metal complexes has been of interest to the organometallic chemist [1,2] not only due to their synthetic and structural characteristics but also to their growing applications such as the use in catalytic and synthetic processes [3], as chiral auxiliaries [4] or as building blocks for complex molecular architectures [5]. They also show interesting mesogenic [6], luminescent, electronic properties [7] and potential applications in medicine and biology [8].

This has prompted our interest in the synthesis of new cyclometallated metalloligands bearing uncoordinated pyridine rings. Ligands with pyridine rings have been extensively studied as building blocks in the construction of supramolecular assemblies [9–17]; yet, few examples in which the heterocyclic ring is part of a cyclometallated ligand have been reported [18–20]. This is probably due to the ease with which the pyridine nitrogen coordinates to the metal center, precluding the access of the C–H bond to the palladium atom [21], in which case the use of indirect methods may be necessary to metallate the ligand [19]. In our quest for new types of metalloligands bearing cyclometallated units we studied the reaction between the Schiff base **1**, bearing a pyridine ring, and palladium(II) acetate that only gave a complex with the ligand coordinated to the palladium atom through the pyridine nitrogen, and no palladium–carbon bond formation. We reasoned that by protecting the pyridine nitrogen we could preclude *N*-coordination and favour *C*-metallation; consequently, reaction of **1** with MeI gave the *N*-methylated Schiff base **3** that, however, did not in turn produce the expected cyclometallated complex; nevertheless, the analogous *N*-oxide Schiff base was readily metallated, bringing forth a new family of potentially oxygen coordinating metalloligands.

2. Results and discussion

For the convenience of the reader the compounds and reactions are shown in Schemes 1 and 2. The compounds described in this paper were characterized by elemental analysis (C, H, N), and IR and ¹H, ¹³C{1H} and ³¹P{1H} spectroscopy (see Section 3) and, in part, by mass spectrometry and X-ray single crystal diffraction

^{*} Corresponding authors. Fax: +34 981 167065 (J.J. Fernández), +34 981 595012 (J.M. Vila).

E-mail addresses: qiluaafl@udc.es (J.J. Fernández), josemanuel.vila@usc.es (J.M. Vila).

^{0277-5387/\$ -} see front matter \circledcirc 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2009.07.058

However, treatment of the *N*-oxide of the Schiff base, **4**, with Pd(OAC)₂ in toluene at 75 °C for 48 h gave the dimer **5**, metallated at the aromatic C6 carbon atom. The IR spectrum of 5 showed the v(C=N) stretching band (see Section 3) shifted to lower frequency (compared to the free imine) in agreement with nitrogen coordination to metal center [22]. This was supported by the characteristic upfield shift (0.43 ppm) of the NMR signal for the imine proton, observed in the cyclometallated complexes as a consequence of N-coordination [23,26-28]. The IR spectrum showed to strong bands $v_{as}(COO)$ and $v_s(COO)$ at 1577 and 1420 cm⁻¹, respectively, in accordance with bridging acetate groups [24,26,28]. The trans geometry of the cyclometallated moieties was determined by the presence at 2.44 ppm of a singlet signal in the ¹H NMR spectrum, assigned to the two equivalent methyl acetate protons [29]. Complex 5 was also characterized by ¹³C{1H} NMR spectroscopy, being the most noticeable feature the shift to higher frequency of the C6, C=N, and C1 resonances (as compared to the uncoordinated ligand or the non cyclometallated complex **2**), confirming the formation of the cyclometallated ring [25,30,31]. The FAB-mass spectrum showed at 809 amu the cluster of peaks assigned to $[{(L-H)(OAc)Pd}_2]^+$ (L-H = cyclometallated ligand), thereby confirming the dinuclear nature of the complex [32].

Complex **5** readily experimented metathesis reactions with sodium chloride or lithium bromide in acetone/water or methanol/ water, respectively, to give the corresponding complexes with bridging halide ligands **6** and **7**. The mass spectra showed peaks assigned to $[{(L-H)XPd}_2H]^+$ (X = Cl, 763 amu; X = Br, 853 amu), consequent with the dinuclear formulation of the complexes. The IR and ¹H NMR spectra were similar to those for complex **5**, being the most noticeable differences the absence of the characteristic acetate bridging ligand signals.

Reaction of the halide-bridged complexes **6** and **7** with triphenylphosphine in chloroform gave the mononuclear complexes **8** and **9**, respectively, which were fully characterized (see Section 3). The IR spectra of these complexes showed the typical low-frequency shift of the v(C=N) band (*vide supra*). In the ¹H NMR spectra the *HC*=N and H5 protons were coupled to the ³¹P nucleus [δ *ca.* 8.08 ppm (*J*(PH) = 7.8 Hz) and δ *ca.* 7.0 ppm (*J*(PH) = 3.9 Hz), respectively], and the ³¹P{1H} NMR spectra showed singlet resonances at *ca.* 39.5 ppm. In the ¹³C{1H} spectra the low-field shift observed for the C6, C=N, and C1 resonances was similar to those found in the spectrum of **5** (*vide supra*) and the C5, resonance showed the coupling to the ³¹P nucleus [*J*(C5P) *ca.* 11]. The mass spectra of **8** and **9** showed peaks centred at 607 amu corresponding to the loss of the halide ligand and, for complex **8** at 643 amu assigned to the molecular ion.

2.1. Molecular structure of complex 9

Suitable crystals were grown by slowly evaporating a chloroform solution of **9**. The molecular structure is illustrated in Fig. 1.

The asymmetric unit comprises two solvent molecules of chloroform and a molecule of complex **9**; molecules of **9** are aligned along the *a*-axis and packed in layers parallel to *a* and *c*, between which the chloroform solvent molecules are located. The palladium atom is bonded in a slightly distorted square-planar geometry to the C(1) carbon atom of the pyridine ring, the imine N(1) atom, the Br(1) atom and to the P(1) phosphorus atom of the triphenylphosphine ligand. The angles between adjacent atoms in the coordination sphere of palladium are close to the expected value of 90° with the most noticeable distortions corresponding to the bite angle C(1)–Pd(1)–N(1) of 81.06(9)°. The sum of the angles about palladium is approximately 360°.

Scheme 1. (i) Pd(OAc)_2, toluene, 60 °C; (ii) MeI, toluene, 90 °C.

analysis. Reaction of the Schiff base ligand 1 with palladium(II) acetate in toluene at 60 °C for 24 h gave the non-cyclometallated complex 2 with two ligands coordinated to the palladium atom through the pyridine nitrogen. The doublet signals assignable to the H2/H6 protons, in the ¹H NMR spectrum, was in agreement with absence of Pd–C bond formation in **1**. The values shown by the v(C=N) stretch, 1610 cm⁻¹, in the IR spectrum and by the the HC=N resonance in the ¹H NMR spectrum, 8.22 ppm, were similar to those for the free ligand, in accordance with the absence of bonding between the palladium and the non-aromatic iminic nitrogen [22,23]. Two strong bands at 1300 and 1555 cm⁻¹ were assigned to the symmetric and asymmetric v(COO) vibrations, respectively, in agreement with those expected for mono-coordinate acetato ligands [24,25]. The ¹H NMR spectrum showed a singlet signal for the acetate CH₃COO⁻ protons at 2.29 ppm and the ¹³C{1H} NMR two signals assigned to the CH₃COO and the CH₃COO acetate carbons at 178.36 and 23.23 ppm, respectively. Regardless of the reaction conditions used (dichloromethane, room temperature; acetic acid, reflux) the reaction between ligand 1 and palladium(II) acetate gave in all cases the coordination complex 2 and not the expected cyclometallated compound.

The pyridine nitrogen of ligand **1** could be *N*-methylated with Mel in toluene at 90 °C in order to hinder its coordination through the pyridine nitrogen and, consequently, favour the cyclometallation reaction. However, reaction of the methylated Schiff base **3** with palladium(II) acetate under analogous reaction conditions as used in the synthesis of **2** (toluene, 60 °C) did not yield the desired product; instead of this a large amount of black palladium appeared in the reaction tube and an untreatable reaction mixture was isolated from the solution. Other reaction conditions

Download English Version:

https://daneshyari.com/en/article/1337266

Download Persian Version:

https://daneshyari.com/article/1337266

Daneshyari.com