Polyhedron 87 (2015) 390-397

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Two novel Cu(II) complexes: Synthesis, structure and application in C–H bond activation

Qiong Wu, Na Xing*, Xin Liu, Liting Xu, Xitong Ma, Zhidan Yan, Yongheng Xing*

College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China

ARTICLE INFO

Article history: Received 24 September 2014 Accepted 4 December 2014 Available online 12 December 2014

Keywords: Cu(II) complexes Synthesis Crystal structure Cyclohexane oxidation Catalysis

1. Introduction

As the main components of natural gas and oil, hydrocarbons, particularly alkanes, are abundant and relatively cheap potential carbon raw materials. Their C–H bond(s) can be converted to C–OH or C=O functional groups, leading to the production of more valuable products for fine chemical synthesis [1–5], such as the cyclohexane (Cy) oxidation. The products of cyclohexanol (CyOH) and cyclohexanone (CyO) (the mixture is commonly known as the KA oil) are important intermediates for the synthesis of caprolactam and adipic acid [6]. Hence, searching efficient catalyst for such reactions becomes a hot topic since the high inertness of saturated hydrocarbons under mild conditions impedes their broad synthetic use [7–11].

Many transition metal complexes, especially Cu(II) complexes, were found to have high catalytic activities in alkanes oxidation [12–14]. [Cu₃(μ_3 -OH)(μ -pz)₃(μ -buta)₂(MeOH)(H₂O)]₂ (Hpz: pyrazole; Hbuta: butanoic acid) and [Cu₃(μ_3 -OH)(μ -pz)₃(μ -EtCOO)₂(-EtOH)]_n were used for Cy oxidation by Nicola in the presence of HNO₃ and H₂O₂. The total yields of main products are 30% and 31%, respectively [15]. Nicola and his co-workers synthesized a Cu(II) complex [Cu₃(μ_3 -OH)(μ -pz)₃(EtCOO)₂(H₂O)] and found that it showed a good catalytic activity (the yield of main product is 28%) in Cy oxidation by H₂O₂ with HNO₃ as additive in MeCN [16]. Nesterov and co-workers found that the Cu(II) complex

ABSTRACT

Two novel Cu(II) complexes $[Cu_2(H_2L)_2(3,5-pyridinedicarboxylic)(H_2O)]\cdot 2NO_3 \cdot 2H_2O$ (1) and $[Cu (2,2'-bipy)(ad)_{1.5}]\cdot H_3O \cdot 2H_2O$ (2) ($H_2L = 2,6-di-(5-methyl-1H-pyrazol-3-yl)pyridine, H_2ad = hexane diacid) were synthesized and characterized by elemental analysis and IR spectra. Their catalytic performances were studied in cyclohexane (Cy) oxidation at mild condition. The total TON (turn over number) value raised from 61 to 271 with the addition of HNO₃ promoted by complex$ **2**, while from 0 to 143 by adding the mixture of HCl and lactic acid by complex**1**.

© 2014 Published by Elsevier Ltd.

 $[Cu_2Co_2Fe_2(\mu-dea)_6(NCS)_4(MeOH)_2]\cdot 3.2H_2O$ (H₂dea: diethanolamine) had potential catalytic activity for Cy and cyclopentane oxidation with H₂O₂ in the presence of HNO₃, and the yield is 45% and 36%, respectively [17]. Kirillov reported that the total yield is 39% when $[Cu_4(\mu_4-O)(\mu_3-tea)_4(\mu_3-BOH)_4][BF_4]_2$ (H₃tea: triethanolamine) acted as catalyst with H₂O₂ and HNO₃ in Cy oxidation [18].

Kirillov and his co-workers found that the kind of acid additives is also a key factor that significantly affects the reaction rate. The reaction proceeds extremely rapidly in the presence of HCl, being one order faster than those promoted by other acids (H₂SO₄, HNO₃, and TFA), and allowing to achieves the remarkably high turnover frequencies (TOFs) of ca. 600 h^{-1} [19]. But, in most cases, HNO₃ is needed as additive in such reactions [20–23]. Otherwise, no CyO and CyOH can be formed [24]. However, the use of HNO₃ leads serious drawbacks. First of all, there are certain amounts of NO and NO₂ released, which results in many environmental problems [25]. Secondly, HNO₃ as a strong oxidizing acid generally made the products be oxidized excessively. Finally, safety problems were hidden in the using of the process since HNO₃ is extremely corrosive. Recently, people try to find mild and environmental friendly acids to replace HNO₃ in such reactions. Pokutsa [26] use oxalic acid as additive in the Cy oxidation which catalyzed by VO(acac)₂, the total TON value reached to 944.

Herein, we designed and synthesized two novel Cu(II) complexes:[Cu₂(H₂L)₂(3,5-pyridinedicarboxylic)(H₂O)]·2NO₃·2H₂O (**1**) and [Cu(2,2'-bipy)(ad)_{1.5}]·H₃O·2H₂O(ad = hexane diacid) (**2**). Their catalytic activities in Cy oxidation with H₂O₂ as the oxidant have been studied in detail. The effect of acid additives, especially a mild

CrossMark

^{*} Corresponding authors. Tel./fax: +86 0411 82156987.

E-mail addresses: scarllet_na@163.com (N. Xing), xingyongheng2000@163.com (Y. Xing).

natural organic acid: lactic acid, is also being discussed. In addition, a possible reaction mechanism was proposed.

2. Experimental

2.1. Reagents and instruments

All chemicals purchased were of analytical grade and were used without further purification. H₂L were synthesized according to the literature method [27–29]. IR spectra were recorded on a JASCO FT/ IR-480 PLUS Fourier Transform spectrometer with pressed KBr pellets in the range 200–4000 cm⁻¹. A 30% aqueous solution of H₂O₂ was used as primary oxidant for catalytic reaction. The products were determined and analyzed by GC-9790 series gas chromatograph (Zhejiang Fuli Instrument Co. Ltd.) equipped with a FID detector and a capillary column. Nitrogen was used as the carrier gas.

2.2. Synthesis of complexes

Synthesis of complex **1**: A mixture of Cu(NO₃)₂·3H₂O (0.1 mmol, 0.0242 g), H₂L (0.1 mmol, 0.0238 g) in methanol (10 mL) and water (2 mL) was stirred for 3–4 h. A few drops of 3,5-pyridinedicarboxylic acid (0.3 mmol, 0.0501 g) in 3 mL methanol was added with continuous stirring. The blue solution was stirred for 3 h before being sealed in a 25 mL Teflon-lined stainless-steel vessel under autogenous pressure and heated at 100 °C for 3 days, then cooled to 60 °C at 10 °C/3 h and further to room temperature slowly. Some blue crystals suitable for X-ray diffraction were obtained after leaving the dark-blue mother solution (filtering off the solid impurity) at room temperature for several days, Yield: 82.95% (based on Cu). *Anal.* Calc. for C₃₃H₃₅N₁₃O₁₃Cu₂ (948.82): C, 41.77; H, 3.70; N, 4.43. Found: C, 41.82; H, 3.67; N, 4.41%. IR data (KBr, cm⁻¹):3441, 3058, 2930, 1622, 1574, 1466, 1380, 1291, 1016, 736, 587.

Synthesis of complex **2**: $Cu(CH_3COO)_2$ ·H₂O (0.0200 g, 0.1 mmol) in 5 mL water was added dropwise to a mixed methanol (10 mL) solution of 2,2'-dipyridyl (0.0156 g, 0.1 mmol) and hexane diacid (0.0146 g, 0.1 mmol). The blue solution was stirring for 3 h to get a dark green transparent solution. After filtration, placing the dark-green mother solution at room temperature for about 6 days, some dark blue crystals suitable for X-ray diffraction were obtained. Yield: 80.48% (based on Cu). Anal. Calc. for C₁₉H₂₆N₂O₉Cu (490.98): C, 46.48; H, 5.31; N, 5.71. Found: C, 46.47; H, 5.27; N, 5.68%. IR data (KBr, cm⁻¹): 3527, 3085, 2950, 1681, 1555, 1417, 1310, 1223, 1037, 703, 558.

2.3. X-ray crystallographic determination

Suitable single crystals of the complexes were mounted on glass fibers for X-ray measurement. Reflection data were collected at room temperature on a Bruker AXS SMART APEX II CCD diffractometer with graphite monochromatized Mo K α radiation ($\lambda = 0.71073$ Å) and a ω scan mode. All absorption corrections were performed using the sADABS program [30]. Crystal structures were solved by the direct method. All non-hydrogen atoms were refined anisotropically. The crystallographic data and experimental details for data collection, as well as structure refinements, are given in Table 1. The drawings were made with the Diamond program. All calculations were performed using the sHELX-97 program [31].

2.4. Experimental for catalytic oxidation

The oxidation reactions were carried out under air condition (atmospheric pressure) in Schlenk tubes. In a typical experiment, 0.001 mmol of the catalysts (complex 1 or 2) was dissolved in 3.00 mL MeCN. Then the required amounts of H_2O_2 and desired

Table 1

Crystallographic data and structure refinement for complexes 1 and 2.

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Complexes	1	2
$\begin{array}{lll} M ({\rm g}\ {\rm mol}^{-1}) & 948.82 & 490.98 \\ \mbox{Crystal system} & \mbox{orthorhombic} & \mbox{triclinic} \\ \mbox{Space group} & \mbox{Pna2}(1) & \mbox{P$\bar{1}$} \\ a ({\rm \mathring{A}}) & 14.436(4) & 9.6255(5) \\ b ({\rm \mathring{A}}) & 13.104(3) & 9.9447(5) \\ c ({\rm \mathring{A}}) & 20.762(5) & 12.7880(7) \\ \alpha (^{\circ}) & 90 & 70.9180(10) \\ \beta (^{\circ}) & 90 & 73.7140(10) \\ \gamma (^{\circ}) & 90 & 75.6450(10) \\ V ({\rm \mathring{A}}^3) & 3927.4(17) & 1093.82(10) \\ Z & 4 & 2 \\ D_{calc} (Mg m^{-3}) & 1.605 & 1.491 \\ \mbox{Crystal size (mm)} & 0.20 \times 0.16 \times 0.11 & 0.20 \times 0.15 \times 0.12 \\ F(000) & 1944 & 512 \\ \mu (Mo \ \mbox{α}) (cm^{-1}) & 1.165 & 1.051 \\ \mbox{Reflections collected} & 1.84-28.34 & 2.20-24.99 \\ \mbox{Independent reflections} (I > 2\sigma(I)) & 23529 & 5514 \\ \mbox{Parameters} & 7667 & 3818 \\ \Delta(\rho) (e \ \mbox{A}^{-3}) & 520 & 280 \\ \mbox{Goodness-of-fit} & 0.780, -0.642 & 0.458, -0.420 \\ \mbox{R_1^a}^a & 0.915 & 1.084 \\ \wbox{wR_2^a} & 0.0374 (0.0427)^b & 0.0297 (0.0317)^b \\ \end{array}$	Formula	C33 H35 N13 O13Cu2	C ₁₉ H ₂₇ N ₂ O ₉ Cu
Crystal systemorthorhombictriclinicSpace group $Pna2(1)$ $P\bar{1}$ a (Å)14.436(4)9.6255(5) b (Å)13.104(3)9.9447(5) c (Å)20.762(5)12.7880(7) α (°)9070.9180(10) β (°)9073.7140(10) γ (°)9075.6450(10) V (Å)3927.4(17)1093.82(10) Z 42 D_{calc} (Mg m ⁻³)1.6051.491Crystal size (mm)0.20 × 0.16 × 0.110.20 × 0.15 × 0.12 $F(000)$ 1944512 μ (Mo K α) (cm ⁻¹)1.1651.051Reflections collected1.84–28.342.20–24.99Independent reflections($I > 2\sigma(I)$)23 5295514Parameters76673818 $\Delta(\rho)$ (e Å ⁻³)520280Goodness-of-fit0.780, -0.6420.458, -0.420 R_1^a 0.9151.084 wR_2^a 0.0374 (0.0427) ^b 0.0297 (0.0317) ^b	M (g mol ⁻¹)	948.82	490.98
Space group $Pna2(1)$ $P\bar{1}$ a (Å) 14.436(4) 9.625(5) b (Å) 13.104(3) 9.9447(5) c (Å) 20.762(5) 12.7880(7) α (°) 90 70.9180(10) β (°) 90 73.7140(10) γ (°) 90 75.6450(10) V (Å ³) 3927.4(17) 1093.82(10) Z 4 2 D_{calc} (Mg m ⁻³) 1.605 1.491 Crystal size (mm) 0.20 × 0.16 × 0.11 0.20 × 0.15 × 0.12 $F(000)$ 1944 512 μ (Mo K α) (cm ⁻¹) 1.165 1.051 Reflections collected 1.84–28.34 2.20–24.99 Independent reflections($I > 2\sigma(I)$) 23 529 5514 Parameters 7667 3818 $\Delta(\rho)$ (e Å ⁻³) 520 280 Goodness-of-fit 0.780, -0.642 0.458, -0.420 R_1^a 0.915 1.084 wR_2^a 0.0374 (0.0427)^b 0.0297 (0.0317)^b	Crystal system	orthorhombic	triclinic
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Space group	Pna2(1)	ΡĪ
$\begin{array}{ccccc} b (\mathring{A}) & 13.104(3) & 9.9447(5) \\ c (\mathring{A}) & 20.762(5) & 12.7880(7) \\ \alpha (^{\circ}) & 90 & 70.9180(10) \\ \beta (^{\circ}) & 90 & 73.7140(10) \\ \gamma (^{\circ}) & 90 & 75.6450(10) \\ V (\mathring{A}^3) & 3927.4(17) & 1093.82(10) \\ Z & 4 & 2 \\ D_{calc} (Mg m^{-3}) & 1.605 & 1.491 \\ Crystal size (mm) & 0.20 \times 0.16 \times 0.11 & 0.20 \times 0.15 \times 0.12 \\ F(000) & 1944 & 512 \\ \mu (Mo K \alpha) (cm^{-1}) & 1.165 & 1.051 \\ Reflections collected & 1.84-28.34 & 2.20-24.99 \\ Independent reflections(I > 2\sigma(I)) & 23529 & 5514 \\ Parameters & 7667 & 3818 \\ \Delta(\rho) (e \ \mathring{A}^{-3}) & 520 & 280 \\ Goodness-of-fit & 0.780, -0.642 & 0.458, -0.420 \\ R_1^a & 0.915 & 1.084 \\ WR_2^a & 0.0374 (0.0427)^b & 0.0297 (0.0317)^b \\ \end{array}$	a (Å)	14.436(4)	9.6255(5)
$\begin{array}{cccc} (\dot{A}) & 20.762(5) & 12.7880(7) \\ \alpha \left(^{\circ}\right) & 90 & 70.9180(10) \\ \beta \left(^{\circ}\right) & 90 & 73.7140(10) \\ \gamma \left(^{\circ}\right) & 90 & 75.6450(10) \\ V \left(\dot{A}^{3}\right) & 3927.4(17) & 1093.82(10) \\ Z & 4 & 2 \\ D_{calc} \left(Mg m^{-3} \right) & 1.605 & 1.491 \\ Crystal size \left(mm \right) & 0.20 \times 0.16 \times 0.11 & 0.20 \times 0.15 \times 0.12 \\ F(000) & 1944 & 512 \\ \mu (Mo K\alpha) (cm^{-1}) & 1.165 & 1.051 \\ Reflections collected & 1.84-28.34 & 2.20-24.99 \\ Independent reflections(I > 2\sigma(I)) & 23529 & 5514 \\ Parameters & 7667 & 3818 \\ \Delta(\rho) \left(e \dot{A}^{-3}\right) & 520 & 280 \\ Goodness-of-fit & 0.780, -0.642 & 0.458, -0.420 \\ R_1^a & 0.915 & 1.084 \\ WR_2^a & 0.0374 \left(0.0427\right)^b & 0.0297 \left(0.0317\right)^b \\ \end{array}$	b (Å)	13.104(3)	9.9447(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>c</i> (Å)	20.762(5)	12.7880(7)
$\begin{array}{lll} \beta\left(\circ\right) & 90 & 73.7140(10) \\ \gamma\left(\circ\right) & 90 & 75.6450(10) \\ V\left(A^3\right) & 3927.4(17) & 1093.82(10) \\ Z & 4 & 2 \\ D_{calc}\left(Mgm^{-3}\right) & 1.605 & 1.491 \\ Crystal size (mm) & 0.20 \times 0.16 \times 0.11 & 0.20 \times 0.15 \times 0.12 \\ F(000) & 1944 & 512 \\ \mu(MoK\alpha)(cm^{-1}) & 1.165 & 1.051 \\ Reflections collected & 1.84-28.34 & 2.20-24.99 \\ Independent reflections(I > 2\sigma(I)) & 23529 & 5514 \\ Parameters & 7667 & 3818 \\ \Delta(\rho)(e {\rm \AA}^{-3}) & 520 & 280 \\ Goodness-of-fit & 0.780, -0.642 & 0.458, -0.420 \\ R_1^a & 0.915 & 1.084 \\ wR_2^a & 0.0374(0.0427)^b & 0.0297(0.0317)^b \\ \end{array}$	α (°)	90	70.9180(10)
$\begin{array}{lll} & \begin{array}{lll} & \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array} \\ & \begin{array}{lll} & \begin{array}{lll} & \end{array} \\ & \end{array} \\ & \begin{array}{lll} & \end{array} \\ & \begin{array}{lll} & \end{array} \\ & \end{array} \\ & \begin{array}{lll} & \end{array} \\ & \end{array} \\ & \begin{array}{lll} & \end{array} \\ & \begin{array}{lll} & \end{array} \\ & \end{array} \\ & \begin{array}{lll} & \end{array} \\ & \begin{array}{lll} & \end{array} \\ & \end{array} \\ & \begin{array}{lll} & \end{array} \\ & \begin{array}{lll} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{lll} & \end{array} \\ & \end{array} \\ & \begin{array}{lll} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{lll} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{lll} & \end{array} \\ & \begin{array}{lll} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{lll} & \end{array} \\ & \begin{array}{lll} & \end{array} \\ & \begin{array}{lll} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ \\ \\$	β (°)	90	73.7140(10)
$\begin{array}{cccc} V\left(\dot{A}^3 \right) & 3927.4(17) & 1093.82(10) \\ Z & 4 & 2 \\ D_{calc} \left(Mg m^{-3} \right) & 1.605 & 1.491 \\ Crystal size (mm) & 0.20 \times 0.16 \times 0.11 & 0.20 \times 0.15 \times 0.12 \\ F(000) & 1944 & 512 \\ \mu(Mo K\alpha) (cm^{-1}) & 1.165 & 1.051 \\ Reflections collected & 1.84-28.34 & 2.20-24.99 \\ Independent reflections(I > 2\sigma(I)) & 23529 & 5514 \\ Parameters & 7667 & 3818 \\ \Delta(\rho) (e \dot{A}^{-3}) & 520 & 280 \\ Goodness-of-fit & 0.780, -0.642 & 0.458, -0.420 \\ R_1^a & 0.915 & 1.084 \\ wR_2^a & 0.0374 (0.0427)^b & 0.0297 (0.0317)^b \end{array}$	γ (°)	90	75.6450(10)
$\begin{array}{ccccc} Z & 4 & 2 \\ D_{calc} (Mgm^{-3}) & 1.605 & 1.491 \\ Crystal size (mm) & 0.20 \times 0.16 \times 0.11 & 0.20 \times 0.15 \times 0.12 \\ F(000) & 1944 & 512 \\ \mu(MoK\alpha)(cm^{-1}) & 1.165 & 1.051 \\ Reflections collected & 1.84-28.34 & 2.20-24.99 \\ Independent reflections(I > 2\sigma(I)) & 23529 & 5514 \\ Parameters & 7667 & 3818 \\ \Delta(\rho)(e\mathring{A}^{-3}) & 520 & 280 \\ Goodness-of-fit & 0.780, -0.642 & 0.458, -0.420 \\ R_1^a & 0.915 & 1.084 \\ wR_2^a & 0.0374(0.0427)^b & 0.0297(0.0317)^b \end{array}$	V (Å ³)	3927.4(17)	1093.82(10)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ζ	4	2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D_{calc} (Mg m ⁻³)	1.605	1.491
$F(000)$ 1944512 $\mu(Mo \ K\alpha) (cm^{-1})$ 1.1651.051Reflections collected1.84-28.342.20-24.99Independent reflections($I > 2\sigma(I)$)23 5295514Parameters76673818 $\Delta(\rho) (e \ Å^{-3})$ 520280Goodness-of-fit0.780, -0.6420.458, -0.420 R_1^a 0.9151.084 wR_2^a 0.0374 (0.0427)^b0.0297 (0.0317)^b	Crystal size (mm)	$0.20\times0.16\times0.11$	$0.20\times0.15\times0.12$
$\begin{array}{lll} \mu({\rm Mo}\;{\rm K}\alpha)\;({\rm cm}^{-1}) & 1.165 & 1.051 \\ {\rm Reflections\;collected} & 1.84-28.34 & 2.20-24.99 \\ {\rm Independent\;reflections}(I > 2\sigma(I)) & 23529 & 5514 \\ {\rm Parameters} & 7667 & 3818 \\ {\rm \Delta}(\rho)\;({\rm e}\;{\rm \AA}^{-3}) & 520 & 280 \\ {\rm Goodness-of-fit} & 0.780, -0.642 & 0.458, -0.420 \\ {\rm R_1}^a & 0.915 & 1.084 \\ {\rm wR_2}^a & 0.0374\;(0.0427)^b & 0.0297\;(0.0317)^b \\ \end{array}$	F(000)	1944	512
Reflections collected1.84–28.342.20–24.99Independent reflections($I > 2\sigma(I)$)235295514Parameters76673818 $\Delta(\rho)$ (e Å ⁻³)520280Goodness-of-fit0.780, -0.6420.458, -0.420 R_1^a 0.9151.084 wR_2^a 0.0374 (0.0427) ^b 0.0297 (0.0317) ^b	μ (Mo K $lpha$) (cm ⁻¹)	1.165	1.051
Independent reflections($l > 2\sigma(l)$)23 5295514Parameters76673818 $\Delta(\rho)$ (e Å ⁻³)520280Goodness-of-fit0.780, -0.6420.458, -0.420 $R_1^{a^*}$ 0.9151.084 $wR_2^{a^*}$ 0.0374 (0.0427) ^b 0.0297 (0.0317) ^b	Reflections collected	1.84-28.34	2.20-24.99
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Independent reflections($l > 2\sigma(l)$)	23529	5514
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Parameters	7667	3818
Goodness-of-fit0.780, -0.6420.458, -0.420 R_1^{a} 0.9151.084 wR_2^{a} 0.0374 (0.0427) ^b 0.0297 (0.0317) ^b	$\Delta(ho)$ (e Å ⁻³)	520	280
R_1^a 0.915 1.084 wR_2^a 0.0374 (0.0427)^b 0.0297 (0.0317)^b	Goodness-of-fit	0.780, -0.642	0.458, -0.420
wR_2^a 0.0374 (0.0427) ^b 0.0297 (0.0317) ^b	R_1^{a}	0.915	1.084
	wR_2^a	0.0374 (0.0427) ^b	0.0297 (0.0317) ^b

^a $R_1 = \sum(||F_o| - |F_c||) / \sum |F_o|$, $wR_2 = \{\sum w[(F_o^2 - F_c^2)^2] / \sum w[(F_o^2)^2]\}^{1/2}$. $[F_o > 4(F_o)]$.

^b Based on all data.

acid were added according to this order. At last, a certain amount of Cy (or CyOH) was added into the solution to make the Cy (or CyOH)/catalyst molar ratio equals to 15000:1. The reaction solution was stirred for 6 h at 50 °C.

For the products analysis, 0.03 g of methylbenzene (internal standard) and 1.5 mL of diethyl ether (to extract the substrate and the organic products from the reaction mixture) were added. The obtained mixture was stirred for 10 min and then a sample (0.2 μ L) was taken from the organic phase and analyzed by a GC equipped with a capillary column and a flame ionization detector by the internal standard method. TON is moles of products (CyOH or CyO)/mole of catalyst.

3. Results and discussion

3.1. Synthesis

The two copper complexes have been successfully prepared for the first time (Scheme 1). To meet the coordinated conditions of ligands with copper atoms together in the reaction system, herein we have done our endeavor to search for the optimistic reaction conditions. For complex 1, the single crystals which suitable for X-ray diffraction could not be obtained when ethanol-water used as solvent at 120 °C until changing the solvent into the mixture of methanol and water and readjusting the ratio of them. The results show that the kind of solvent is an important reaction parameter of the crystal growing in the reaction system. Similarly, the crystals of complex 2 could not be obtained when the mixtured solution was heated at 120, 80, or 60 °C, but room temperature. It is worth to note that different starting materials of Cu(II) were used in the synthesis process of complexes 1 and 2. Exhausted experiments show that $Cu(NO_3)_2 \cdot 3H_2O$ is good reactant to prepare complexes 1 and 2, while $Cu(CH_3COO)_2 \cdot H_2O$ is only suitable for complex 2.

3.2. IR spectra

The IR spectra data of the complexes **1** and **2** are listed in Table 2. For the two complexes, the broad absorption bands in the region of $3257-3467 \text{ cm}^{-1}$ were assigned to v(O-H) of the coordinated or Download English Version:

https://daneshyari.com/en/article/1337382

Download Persian Version:

https://daneshyari.com/article/1337382

Daneshyari.com