
ELSEVIER

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

UV-Vis-NIR spectroelectrochemical study of tetrathiorhenate-bridged diruthenium complexes

Anita Grupp ^a, Jan Fiedler ^b, Wolfgang Kaim ^{a,*}

- ^a Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- b J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague, Czech Republic

ARTICLE INFO

Article history: Received 17 March 2014 Accepted 7 May 2014 Available online 22 May 2014

Dedicated to Prof. Claude Lapinte

Keywords: Redox reactions Rhenium compound Ruthenium compound Spectroelectrochemistry Sulfide bridge

ABSTRACT

The new compound (NEt₄)[(acac)₂RuS₂ReS₂Ru(acac)₂] was characterized by cyclic voltammetry to reveal reversible reduction and oxidation behavior. While the redox products proved EPR silent, the UV-Vis-NIR spectroelectrochemistry showed shifted charge-transfer absorptions and a typical near-infrared intervalence (Ru^{II} \rightarrow Ru^{III}) band at λ_{max} = 1725 nm (ε = 1800 M⁻¹ cm⁻¹) for the one-electron oxidized intermediate. The results are discussed in comparison to those obtained for [(bpy)₂RuS₂ReS₂Ru(bpy)₂]Cl₃. © 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Tetrathiometallates have frequently served as building blocks for higher nuclear aggregations, e.g. with the aim of modeling hydrodesulfurization and other catalysts [1,2]. The rather facile reduction of ReS₄ in particular [3,4] has stimulated our research in probing the properties of rhenium(VI) species based on ReS₄² [4,5]. The bis-bidentate chelating capacity of tetrathiometallates [6] as potentially redox-noninnocent bridging ligands has been employed to prepare dinuclear, trinuclear and higher nuclear arrangements [1,7]. Bridging components with low lying orbitals such as π^* orbitals of aromatic organic molecules can serve as mediators between two redox-active centers, such as transition metals [8]. The classical case in point is the Creutz-Taube ion 1 in which two ruthenium ions of formally different charge are effectively bridged by a potentially electron-accepting ligand [9]. Numerous studies of this and related systems such as the molecule-bridged dinuclear bis(acetylacetonato)ruthenium species 2a and 2b have been reported in attempts to understand the factors determining the equilibrium situation, the electronic interaction, and the magnetic coupling [8–10].

$$(H_3N)_5Ru-N N-Ru(NH_3)_5$$

$$1$$

$$(acac)_2Ru N N-Ru(acac)_2$$

$$N N-Ru(NH_3)_5$$

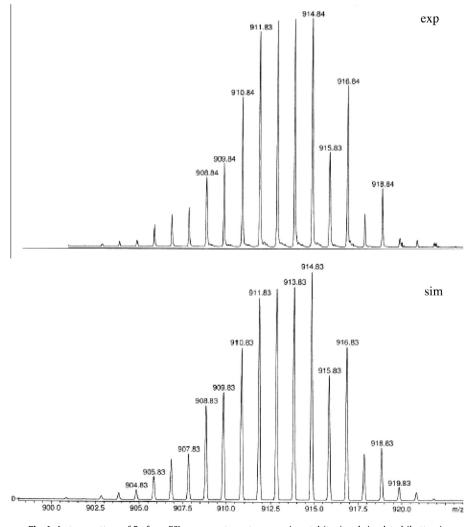
$$Ru N N-Ru(NH_3)_5$$

$$Ru N N-Ru(acac)_2$$

$$Ru N N-$$

Inorganic bridged diruthenium redox systems without conventional planar π systems such as in **1**, **2a** or **2b** have been described e.g. with halide [11a] or N₂ bridges [11b]. Here we can report an effort using a tetrathiometallate bridge by presenting compound (NEt₄)**3** = (NEt₄)[(acac)₂RuS₂ReS₂Ru(acac)₂] and describing its electron transfer behavior. The results will be compared to those obtained for [(bpy)₂RuS₂ReS₂Ru(bpy)₂]Cl₃ = **4**(Cl)₃, a compound referred to earlier [4].

^{*} Corresponding author. Tel.: +49 71168564170; fax: +49 68564165. E-mail address: kaim@iac.uni-stuttgart.de (W. Kaim).


2. Results and discussion

The trinuclear complex ion 3^- could be prepared as the tetraethylammonium salt by reacting the well known [12] precursor [Ru(acac)₂(CH₃CN)₂] with the tetrathiorhenate(VII) ion [13]. Although the substance could not be crystallized for X-ray structure determination, its identity was established by elemental analysis and mass spectrometry, showing the calculated isotope combination pattern for 3^- (Fig. 1). We therefore assume a structure 3^- = [(acac)₂Ru(μ -S)₂Re(μ -S)₂Ru(acac)₂]⁻ as obtained before for related trinuclear tetrathiometallate-bridged systems [1,6].

The analogous $4^{3+} = [(bpy)_2Ru(\mu-S)_2Re(\mu-S)_2Ru(bpy)_2]^{3+}$ was prepared as a trichloride, as described previously [4].

Both tetrathiorhenate-bridged diruthenium complex ions exhibit oxidation and reduction behavior (Fig. 2). According to the charge differences resulting from the different co-ligands (anionic acac versus neutral bpy), the corresponding redox potentials of 3and 43+ are shifted in rather different ways (Table 1). While the double coordination of dicationic $[Ru(bpy)_2]^{2+}$ to ReS_4^- yields the expected [4,5,14,15] effect of shifting both reduction waves of the tetrathiometallate to considerably less negative values, the twofold coordination of the neutral complex fragments [Ru(acac)₂] causes a shift to more negative potentials. Apparently, the back-donation from two electron-rich ruthenium centers overcompensates the bonding polarization originating from the tetrathiometallate. Similar effects have been observed in complexes of $(n^n-C_nR_n)M$. M = Rh or Ir and n=5. M = Ru or Os and n=6, with α -diimine acceptor ligands [16]. As a consequence of the addition of two neutral [Ru(acac)₂] fragments to ReS₄ the oxidation is now facilitated (Table 1) because it involves the electron-rich ruthenium centers.

Both complexes ${\bf 3}^-$ and ${\bf 4^{3+}}$ display long-wavelength absorption bands between 700 and 1100 nm (Fig. 3). These can be attributed to bathochromically shifted ligand-to-metal charge transfer (LMCT) transitions (S^{-II} \rightarrow Re or Ru) and to metal-to-metal charge transfer (MMCT) [5]. The shift of the LMCT band would correspond

 $\textbf{Fig. 1.} \ \ \textbf{Isotope pattern of } \textbf{3}^- \ \ \textbf{from ESI mass spectrometry: experimental (top) and simulated (bottom).}$

Download English Version:

https://daneshyari.com/en/article/1337505

Download Persian Version:

https://daneshyari.com/article/1337505

<u>Daneshyari.com</u>