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DFT calculations at the B3LYP/Def2-SVP level have been conducted on the half-sandwich cycloheptatrie-
nyl molybdenum complexes [Mo(CO)s(n-C;H7)]", [1]* and [MoBrLy(n-C;H7)]™ (L,=2 CO, n=0, 2;
L,=bpy, n=0, 3; L,=bpy, n=1, [3]"; bpy =2,2"-bipyridyl). In all cases, strong §-bonding interactions
operate between the e; level of the C;H; ring and metal d,, and d,._,» orbitals resulting in a metal-centred
HOMO with substantial d, character in the 18-electron, closed shell systems. The experimental
electronic UV-Vis spectra of [1]", 2 and 3 are accurately reproduced by TD-DFT methods. For complexes
2 and 3, assignments made with the assistance of calculated spectra indicate that absorptions in the
region 390-770 nm originate from a series of MLCT (metal-ligand charge transfer) or ILCT (inter-ligand
charge transfer) transitions in which carbonyl, C;H; and 2,2’-bipyridyl ligands act as acceptor systems
from the metal or mixed metal and bromide donor groups. The metal-centred, one-electron oxidation
of 3 to 3[PFs] results in almost complete quenching of the visible region MLCT/ILCT absorptions of 3
and replacement with weak transitions probably arising from bromide to metal LMCT (ligand to metal
charge transfer) processes.
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1. Introduction

The cycloheptatrienyl ligand, C;H, has occupied an important
role in the development of the organometallic chemistry of
metal-sandwich and half-sandwich systems such as [M(n-CsHs)
(T]—C7H7)] (M=Tl, Zr, Hf, V, Cr, Mo, W) and [ML3(T]—C7H7)]“+
(M =Cr, Mo or W) [1-6] and offers the potential for advances in
f-block organometallic chemistry, where the large size of the
C;H; ring is key to enhanced stability of lanthanide and actinide
complexes relative to examples with smaller ring ligands [7-9].
By comparison with the more commonly encountered cyclopenta-
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dienyl (CsHs) ligand, the cycloheptatrienyl ligand is distinguished
by its significant steric requirements [10], the facility of intercon-
version between hapticity modes [11-13] and more fundamen-
tally, effects on electronic structure. Essentially the larger ring
size of C;H; by comparison with CsHs results in a lowering in the
energy of the ring e, MO’s [14] leading to strong &-interactions
with metal valence d orbitals. The importance of metal-ring §-
interactions in the electronic structure of cycloheptatrienyl
metal-sandwich complexes is well established [2-4,8,15] but very
little attention has been given to the extension of this principle to
half-sandwich systems [16] such as [MLs(n-C;H;)]™" where poten-
tially the impact on the tripodal L; ligand set could be even more
pronounced. In this context, a recent series of investigations on
half-sandwich vinylidene [Mo(C = CHR)(dppe)(n-C;H;)]" [17]
(dppe = Ph,PCH,CH,PPh;) and carbon chain complexes [Mo{(C=C),-
C=CR)Ly(n-C;H)]™ (n=0 or 1; x=0 or 1, Ly=dppe; x=1,
L, = bpy) [18,19], has demonstrated a re-ordering of the d-orbital
manifold arising from metal-ring 3-bonding, leading to a metal-
centred HOMO with significant d,. character. This in turn is
reflected in the novel structural and redox chemistry of these sys-
tems [18-21].
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A further distinction between C;H; and cyclopentadienyl
ligands is a difference in formal charge of the co-ordinated ligand.
Although the assignment of a formal charge to the C;H; ligand,
ranging from +1 to -3, remains an issue of debate [3b,7a,9,
10,22], the positive charge formalism, C;H3, may have some valid-
ity in the half-sandwich series [ML3(1n-C;H7)]"™" (M = Cr, Mo or W)
for which selected examples exhibit properties typical of d® metal
centres [17]. On this basis, it has been suggested that the cyclohep-
tatrienyl ligand can act as a good acceptor group in MLCT and ILCT /
LLCT processes [23,24]. To examine this premise, and to explore
further the control of electronic structure by metal-C;H; 8-bond-
ing over an extended series, [Mo(CO)3(n-C;H7)][PFs] and the
bromide complexes [MoBrLy(n-C;H7)]"" (L,=2 CO, n=0; L,=2,
2’-bipyridyl (bpy), n=0 or 1 [25]) have been investigated by DFT
and TD-DFT methods and the results correlated with experimental
electronic spectra. The halide complexes feature a ligand set which
combines the donor properties of the bromide ligand with a range
of potential acceptor ligands, CO, C;H; or 2,2’-bipyridyl, appropri-
ate to the promotion of MLCT and ILCT excitations. Although
the complexes [Mo(CO);(n-C;H;)][PFs] and [MoX(CO),(n-C;H7)]
(X = halide) are fundamental examples of organometallic cyclohep-
tatrienyl derivatives, the work presented here details the first full
DFT treatment of these important half-sandwich systems.

2. Results and discussion
2.1. Synthetic and structural Investigations

The complexes [MoBrL,(n-C;H7)]™" (L, =2 CO, n =0, 2; L, = bpy,
n=0,3; L, =bpy, n=1, [3]") were obtained by previously reported
synthetic protocols, starting from [Mo(CO)3(n-C;H7)][PFs], 1[PFs],
as outlined in Scheme 1. The conversions are accompanied by a
sequence of colour changes from yellow (1[PFg]) to green (2) to
intense purple (3) and finally orange (3[PFg]).

To facilitate optimisation of calculated structures, experimen-
tally determined structural data for the series of complexes under
investigation was examined. Structural data for 1[BF4] and 2 are
available in the literature [26,27]. In addition, the X-ray crystal
structure of the 17-electron, 2,2’-bipyridyl complex, 3[PFs], was
obtained in the current work; the molecular geometry of 3[PFs]
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Scheme 1. Reagents and conditions (i) NaBr in acetone; (ii) 2,2’-bipyridyl in toluene,
reflux 3 h. (iii) [FeCp,][PFs] in CH,Cl,.
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Fig. 1. Molecular structure of complex 3[PFs], with thermal ellipsoids plotted at
50% probability. Hydrogen atoms are omitted for clarity. Key bond lengths (A) and
angles (°): Mo(1)-Br(1), 2.568(1); Mo(1)-N(1), 2.187(5); Mo(1)-N(2), 2.193(6);
N(1)-Mo(1)-N(2), 73.3(2); N(1)-Mo(1)-Br(1), 82.9(2); N(2)-Mo(1)-Br(1), 86.2(2).

is illustrated in Fig. 1 together with important bond lengths and
angles. The data for 3[PFs] complement previous investigations
on the structural effects of one-electron oxidation within the
[MoX(bpy)(m-C7H7)]™ family of complexes and the Mo-N dis-
tances in 3[PFg] (2.187(5), 2.193(6) A) appear to correspond more
closely with those determined for 17-electron [Mo(C=C-
C=CR)(bpy)(N-C7H)]" (2.19(1), 2.15(2)A) than for 18-electron
[Mo(C=C-C=CR)(bpy)(n-C7H7)] (2.134(2), 2.142(2) A) [19].

2.2. Electronic structure calculations

A computational study of the electronic structure of the model
systems [Mo(CO)3(n-C7H)]", [1A]", [MoBr(CO)(n-C/H;)], 2A,
[MoBr(bpy)(n-C;H5)], 3A, and the open-shell, 17-electron radical
[MoBr(bpy)(n-C;H7)]", [3A]", (denoted A to distinguish the compu-
tational and experimental systems) was conducted at the DFT
level. Starting from the crystallographic structures of the experi-
mental systems 1[BF,], 2, and 3[PFs], full geometry optimisations
were performed using the B3LYP functional [28] and the Def2-
SVP basis obtained from the Turbomole library [29]. Time-
dependent DFT (TD-DFT), as implemented in the Gaussian suite
of programs [30], was used to obtain transition energies and
oscillator strengths which were convoluted to produce absorption
spectra using the GaussSum software [31].

There is generally good agreement between the crystallograph-
ically determined structures of the experimental systems and the
DFT optimised geometries; metrical parameters from the DFT opti-
mised geometries and comparisons with experimental, crystallo-
graphic data are presented in Table 1. The one-electron oxidation
of 3A to [3A]" is predicted to result in a decrease in the Mo-Br bond
length and corresponding increase in the Mo-N (bpy) distance in
accord with experimental (R = SiMes) and calculated (R =H) data
for the related redox pair [Mo(C=C-C=CR)(bpy)(n-C;H;)]"™"
(n=0 or 1) [19]. Figs. 2-4 illustrate the plots of the key frontier
orbitals for [1A]*, 2A, and 3A, (HOMO-2, HOMO-1, HOMO, LUMO,
LUMO+1).

Before the specific effects of the tripodal ligand set are
discussed, the general features of electronic structure, common
to all of the systems investigated should be noted. For, [1A]", 2A
and 3A, the principal components of the frontier orbitals are simi-
lar throughout the series. Thus the LUMO and LUMO+1 incorporate
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