Polyhedron 39 (2012) 25-30

Contents lists available at SciVerse ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Syntheses and structures of the first terminal phosphanylphosphido complexes of molybdenum(IV)

Tomasz Kruczyński, Rafał Grubba, Katarzyna Baranowska, Jerzy Pikies*

Chemical Faculty, Department of Inorganic Chemistry, Gdansk University of Technology, G. Narutowicza St. 11/12. Pl-80-233 Gdańsk, Poland

ARTICLE INFO

Article history: Received 28 November 2011 Accepted 7 March 2012 Available online 29 March 2012

Keywords: Phosphinidene complexes Phosphido complexes Molybdenum complexes

ABSTRACT

The reactions of R₂P—P(SiMe₃)Li (R = ^{*i*}Bu, ^{*i*}Pr₂N) with [Cp₂MoCl₂] yield terminal phosphanylphosphido complexes formally via the insertion of the phosphinidene P-atom into the C—H bond of a cyclopentadie-nyl ring and the migration of the hydrogen atom or SiMe₃ moiety to the molybdenum centre. Solid state structures of [Cp(C₅H₄P—P^{*i*}Bu₂)MoH], [Cp(C₅H₄P—P^{*i*}Bu₂)Mo(SiMe₃)] and [Cp{C₅H₄P—P(N^{*i*}Pr₂)₂}Mo (SiMe₃)] were established by single crystal X-ray diffraction. The proposed reaction path is supported by the results of NMR studies and DFT calculations.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Though interest in phosphinidene complexes has grown enormously in recent years, the synthesis of isolable mononuclear nucleophilic phosphinidene complexes of transition metals still represents a significant challenge [1]. Phosphinidene complexes of the molybdenum group can be divided into four categories: (i) phosphinidene bridged electrophilic dimolybdenum complexes [2], (ii) terminal bent nucleophilic [Cp₂Mo(PMes^{*})], which was obtained in the reaction of [(MoCp₂HLi)₄] with Mes^{*}PCl₂ [3], (iii) terminal bent cationic electrophilic [Cp^{*}(CO)₃Mo(PNⁱPr₂)]⁺ [4] and (iv) unstable neutral [Cp^{*}₂Mo(P—NHMes^{*}] [5].

The main target of our group is the incorporation of phosphanylphosphinidene groups, R_2PP , into transition metal complexes via methathesis reactions of lithiated diphosphanes, $R_2P-P(SiMe_3)$ Li ($R = {}^{t}Bu$, ${}^{i}Pr$, Et_2N and ${}^{i}Pr_2N$), with dichlorido complexes of transition metals. These precursors, similarly to lithiated phosphanes, can act as a source of both phosphanylphosphido [6a,b] and terminal phosphanylphosphinidene ligands [6c]. Reactions leading to diphosphorus complexes [6d] or to complexes with side-on bonded phosphanylphosphinidene ligands of Pt(0) [6e] or W(IV) [6f] have no equivalents in the case of lithiated phosphanes.

Recently we have reported the reactions of R_2P –P(SiMe₃)Li (R = ${}^{t}Bu$, ${}^{i}Pr$, ${}^{i}Pr_2N$ and Et₂N) with [Cp₂WCl₂]. These metathesis reactions yield a new type of tungsten(IV) phosphanylphosphido complexes, [Cp(C₅H₄P–PR₂)WH] and [Cp(C₅H₄P–PR₂)W(SiMe₃)] [7], and resemble the rearrangement leading to [(C₅H₄Me) {C₅H₃Me(PMes^{*})}WH] observed by Cowley and co-workers in the

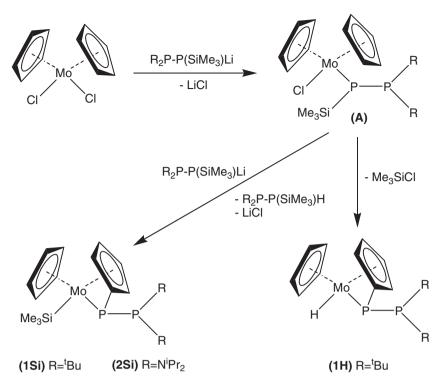
reaction of Mes^{*}(Me₃Si)PLi with $[(C_5H_4Me)_2WCl_2]$. This result was rationalized by assuming the formation of the "transient" $[(C_5H_4Me)_2W(PMes^*)]$ followed by a P-atom insertion into a Cp ring and $H \rightarrow W$ transfer [8]. Contradictory to this finding, the related similar complex $[Cp_2Mo(PMes^*)]$ was obtained in a different way and proved to be a stable "bent" phosphinidene complex [3]. Thus a mechanism proposed by Cowley should probably be revised.

Now we present the results of our studies on the reactivity of $R_2P-P(SiMe_3)Li$ ($R = {}^tBu$, iPr_2N) towards [Cp_2MoCl_2]. The aim of our work was to get more insight into the art of binding of a R_2PP moiety to the Cp_2Mo centre and to compare the outcomes of the reactions with those reported for [Cp_2WCl_2] [7]. Some of the described results were presented in a preliminary form at the 8th European Workshop on Phosphorus Chemistry [9].

2. Results and discussion

[Cp₂MoCl₂] reacts with R₂P–P(SiMe₃)Li yielding phosphanylphosphido complexes by the formal insertion of the phosphinidene P-atom into the C–H bond of a cyclopentadiene ring and migration of a hydrogen atom in the case of [Cp(C₅H₄P–P^tBu₂)MoH] (**1H**) or a SiMe₃ group in the case of [Cp(C₅H₄P–P^tBu₂)Mo(SiMe₃)] (**1Si**) and [Cp{C₅H₄P–P(NⁱPr₂)₂}Mo (SiMe₃)] (**2Si**) to the Mo atom (Scheme 1).

Table 1 shows the results of ³¹P NMR spectra of solutions from the reactions of [Cp₂MoCl₂] with ^tBu₂P—P(SiMe₃)Li·2THF and with (ⁱPr₂N)₂P—P(SiMe₃)Li·1.1THF. The molar ratio of compounds (**1H**)/(**1Si**) was established by the integration of the ³¹P{¹H} resonances of the P1 atoms (connected to the Mo atom). The contents of side products were estimated from the heights of the ³¹P{¹H} NMR resonances of the R₂P group.



^{*} Corresponding author. Tel.: +48 58 3472874.

E-mail address: jerzy.pikies@pg.gda.pl (J. Pikies).

^{0277-5387/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.poly.2012.03.023

Scheme 1. The formation of phosphanylphosphido complexes 1Si, 2Si and 1H.

Table 1

The results of NMR studies for the reactions of R₂P-P(SiMe₃)Li with [Cp₂MoCl₂].

No.	Substrate (mmol)	S	Solvent	Products (%), side-products (intensity of signal) s – strong, m – medium, w – weak
	$R = {}^{t}Bu$	Cp ₂ MoCl ₂		
1	0.37	0.69	DME	1H (61%) 1Si (39%), ^{<i>t</i>} Bu ₂ P—P(SiMe ₃)H (w), ^{<i>t</i>} Bu ₂ PH (m)
2	0.60	0.27	DME	1H (13%) 1Si (87%), ^{<i>t</i>} Bu ₂ P—P(SiMe ₃)H (s)
3	0.66	0.69	Toluene	1H (3%) 1Si (97%), ^{<i>t</i>} Bu ₂ P—P(SiMe ₃)H (s)
	$R = {}^{i}Pr_2N$	Cp ₂ MoCl ₂		
4	0.79	0.59	DME	2Si (100%), $({}^{i}Pr_{2}N)_{2}P$ —PH—P($N{}^{i}Pr_{2})_{2}$ (m), $({}^{i}Pr_{2}N)_{2}PH$ (w), $({}^{i}Pr_{2}N)_{2}P$ —P(SiMe ₃)H (m)
5	1.19	0.60	DME	2Si (100%), (^{<i>i</i>} Pr ₂ N) ₂ P—P(SiMe ₃)H (m)
6	0.75	0.69	Toluene	2Si (100%), (^{<i>i</i>} Pr ₂ N) ₂ P–P(SiMe ₃)H (s)

 $({}^{i}Pr_2N)_2P$ —P(SiMe₃)Li reacts with [Cp₂MoCl₂] yielding solely [Cp{C₅H₄P—P(NⁱPr₂)₂}Mo(SiMe₃)] (a pair of enantiomers) (**2Si**) – similarly to the reaction of [Cp₂WCl₂] [7]. **2Si** decomposes slowly in solution. Runs 1, 2 and 3 (see Table 1) indicate that mixtures of [Cp(C₅H₄P—P^tBu₂)MoH] (**1H**) and [Cp(C₅H₄P—P^tBu₂)Mo(SiMe₃)] (**1Si**) form in toluene as well as in DME. The formation of **1Si** is clearly favoured, the amount of **1H** is significant only if an excess of [Cp₂MoCl₂] is present (run 1, Table 1).

A comparison of the reactivity of ${}^{t}Bu_{2}P$ —P(SiMe₃)Li towards [Cp₂MoCl₂] versus [Cp₂WCl₂] indicates that the tendency to form hydrido [Cp(C₅H₄P—P^tBu₂)MH] versus silyl complexes [Cp(C₅H₄P—P^tBu₂)M(SiMe₃)] is favoured if M = W, moreover for M = W four isomers (two pairs of enantiomers) of the hydrido complex [Cp(C₅H₄P—PR₂)WH] (R = ${}^{t}Bu$ or ${}^{i}Pr$) are formed [2b].

The ¹H NMR spectrum of the reaction solution for the run of ${}^{t}Bu_2P$ —P(SiMe₃)Li with [Cp₂MoCl₂] indicates an unresolved triplet at -9.245 ppm (Mo—H). According to our earlier results [7], it points to the formation of only two isomers (one pair of enantiomers) in which the Mo—H and P—P^tBu₂ bonds are placed on the same side of the three-membered Mo1—P1—C10-ring (Fig 2). The

calculated DFT [10–12] structure of **1H** (Fig. 3) properly locates the Mo–H bond.

The formation of the phosphido complex **D** via the rearrangement of a transient phosphinidene complex **C** and hydrogen migration to the tungsten atom was postulated by Cowley and co-workers [8] (Scheme 2).

The phosphido complex **B** losses Me₃SiCl to afford the transient phosphinidene complex **C**. In the next step compound **C** rearranges to the phosphido complex **D**. Lappert and co-workers [3] had, however, isolated phosphinidene complexes [Cp₂M(PMes*)] (M = Mo, W) very similar to **C** in the reaction of [{MCp₂HLi}₄] with Mes*PCl₂. These complexes are stable at room temperature in solution and there is no evidence for a rearrangement to complexes similar to **D**. Thus the step **C** \rightarrow **D** is not very likely. We have performed DFT [10–12] calculations in order to get more insight into the stability of possible transient compounds in the reaction of [Cp₂MoCl₂] with ^tBu₂P—P(SiMe₃)Li in a 1:1 M ratio. The results of our calculations are shown in Scheme 3.

Our calculations indicate that the phosphanylphosphido complex **A** is thermodynamically unstable. In order to get more insight into the origin of the high reactivity of $[Cp_2(Cl)Mo\{(Me_3Si)P-P^TBu_2\}]$, we have performed DFT calculations on its structure (Fig. 1).

The Cl1—Mo1—P1—Si1 dihedral angle of 15.26° in Cp₂MoCl {(Me₃Si)P—P^{*t*}Bu₂}] (**A**) is nearly ideal for intramolecular Me₃SiCl elimination via a cyclic transition state leading to [Cp₂Mo (η^{1} -P—P^{*t*}Bu₂)], so that the tendency of **A** to rearrange yielding the transient [Cp₂Mo(η^{1} -P—P^{*t*}Bu₂)] or **1H** is obvious. We suggest that the phosphido complexes **A** (Scheme 1) and **B** (Scheme 2) are responsible for the formation of **1H** and **1Si** (Scheme 1) or **D** (Scheme 2) and a phosphinidene complex of the **C** type is not formed at all. This assumption is strongly supported by the stability of [Cp₂M(PMes*)] (M = Mo,W) [3], by the lack of [Cp₂Mo(η^{1} -P—P^{*t*}Bu₂)] in the reaction solutions and by the formation of **1Si**, which is hard to explain by considering the step **1H** \rightarrow **1Si**. We have calculated the enthalpy change for this hypothetical reaction (not included in Scheme 3):

Download English Version:

https://daneshyari.com/en/article/1337577

Download Persian Version:

https://daneshyari.com/article/1337577

Daneshyari.com