Polyhedron 34 (2012) 24-30

Contents lists available at SciVerse ScienceDirect

Polyhedron

Syntheses and characterization of two supramolecular self-assembled Mn(II) compounds using *trans* 4,4'-azobispyridine as a bridging ligand: Effect of π - π interactions in the formation of a solid-state structure

Rajdip Dey, Debajyoti Ghoshal*

Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India

ARTICLE INFO

Article history: Received 27 October 2011 Accepted 2 December 2011 Available online 16 December 2011

Keywords: X-ray diffraction $\pi-\pi$ Interaction Manganese(II) Thermal study

ABSTRACT

Two new compounds of Mn(II) with the same bridging ligand, *trans* 4,4'-azobispyridine (*azbpy*), and different co-ligands, 1,10-phenanthroline (*phen*) and 2,2'-bipyridine (*bpy*), have been synthesized and characterized by X-ray crystallography and other physicochemical methods. Although the compounds were prepared under similar reaction conditions, as well as using the same reactant ratios, their compositions and solid state structures are entirely different in the two cases. Compound 1, with [Mn(*azbpy*)(*phen*)Cl₂]_n and [Mn(*phen*)₂Cl₂] moieties, constructs a supramolecular 3D self assembly through π - π interactions, whereas in **2** the [Mn(*azbpy*)(*bpy*)Cl₂]_n moiety and the lattice *azbpy* forms the supramolecular 3D arrangement by both π - π and C-H… π interactions. A thermogravimetric study of the complexes and the solid state fluorescence spectra of the ligand and complexes corroborate their structures.

© 2011 Elsevier Ltd. All rights reserved.

POLYHEDRON

1. Introduction

The design of supramolecular self assemblies has had considerable attention over the last two decades, due to its structural elegancy as well as functional properties [1–8]. In this context, the effect of aromatic–aromatic interactions or π – π interactions [9,10] on the formation of supramolecular self assemblies has become important as these types of interactions are quite ubiquitous in the secondary and tertiary structures of proteins [11,12].

The effect of π - π interactions in the formation of highly fascinating supramolecular self-assemblies, even from very simple monomeric building blocks [13–17], has become an interesting area in crystal engineering [18,19]. This is also important as the controlled self-assembly of small molecules with well defined association properties is easier and more economical than the direct synthesis of a similarly complex covalent structure [20–26].

Hence, to investigate the effect of π - π interactions on crystal packing we have synthesized two compounds of Mn(II) with the same bridging ligand, *trans* 4,4'-azobispyridine (*azbpy*), and different co-ligands, 1,10-phenanthroline (*phen*) and 2,2'-bipyridine (*bpy*). Although the compounds were prepared under similar reaction conditions, as well as using the same reactant ratios, the solid state structures, and even the moiety formulae, are entirely different in the two cases. Compound **1**, with [Mn(*azbpy*)(*phen*)Cl₂]_n and [Mn(*phen*)₂Cl₂] moieties, forms a self assembly by π - π interactions

* Corresponding author. Fax: +91 3324146223.

E-mail address: dghoshal@chemistry.jdvu.ac.in (D. Ghoshal).

only. Here the self-assembly is constructed by chains which are stacked with mononuclear units to create an overall supramolecular sheet type arrangement (Scheme 1). In **2**, the [Mn(*azbpy*)(*b*-*py*)Cl₂]_n moiety along with lattice *azbpy* forms a three-leg ladder type arrangement, where the aromatic rings of the ligated bipyridine are stacked by strong face to face π - π interactions with the pyridine ring of lattice *azbpy* ligands (Scheme 2). The solid state structure of **2** is further extended into a 2D structure with C-H··· π interactions.

2. Experimental

2.1. Materials

Trans 4,4'-azobispyridine (*azbpy*) was synthesized following a slightly modified published procedure of the oxidative coupling of 4-aminopyridine [27–29]. High purity manganese(II) chloride tetrahydrate was purchased from the Aldrich Chemical Company Inc. and used as received. All other chemicals were of AR grade and used as received.

2.2. Physical measurements

Elemental analyses (carbon, hydrogen and nitrogen) were performed using a Perkin–Elmer 240C elemental analyzer. Infrared spectra (4000–400 cm⁻¹) were taken as KBr pellets, using a Perkin–Elmer Spectrum BX-II IR spectrometer. TGA was carried out on a Shimadzu DT-30 thermal analyzer under dinitrogen (flow

^{0277-5387/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2011.12.004

Scheme 1.

Table 1

_

Crystallographic and structural refinement parameters for 1 and 2.

	1	2				
Formula Formula weight Crystal system	C ₇₀ H ₆₂ N ₁₄ O ₇ Cl ₆ Mn ₃ 1588.85 monoclinic	C ₃₀ H ₂₄ N ₁₀ Cl ₂ Mn 650.43 monoclinic	Table 2 Selected bond lengths (Å) and bond angles (°) for 1.			
Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°) V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) F(000) θ Range (°) Reflections collected Unique reflections Reflections I > 2 σ (I) R_{int} Goodness-of-fit (GOF) (F^2) P_{alc}	P2/n 15.1295(5) 10.5555(4) 24.2910(9) 90 96.549(2) 90 3853.9(2) 2 1.357 0.751 1598 1.5–27.6 51105 8898 5779 0.061 1.09 2.0944	$\begin{array}{c} P2_1/m\\ 9.5490(7)\\ 13.6792(10)\\ 11.2541(9)\\ 90\\ 91.402(4)\\ 90\\ 1469.60(19)\\ 2\\ 1.470\\ 0.671\\ 666\\ 1.8-28.1\\ 13015\\ 3691\\ 3066\\ 0.028\\ 1.15\\ 0.0255\end{array}$	Mn1-Cl1 Mn1-N3 Mn1-N1a Mn2-N7 Mn2-N4 Mn2-N6 Cl1-Mn1-N1 Cl1-Mn1-N3 Cl1-Mn1-Cl1a Cl1-Mn1-N3a N1-Mn1-N3 N1-Mn1-N3 N1a-Mn1-N3 Cl1a-Mn1-N3 Cl1a-Mn1-N3a Cl1a-Mn1-N3a N1a-Mn1-N3a N1a-Mn1-N3a N1a-Mn1-N3a N1a-Mn1-N3a N1a-Mn1-N3a	2.4599(13) 2.333(3) 2.300(3) 2.266(5) 2.329(4) 2.284(4) 93.92(8) 163.46(9) 103.89(5) 92.44(8) 88.21(11) 84.87(11) 92.44(8) 84.87(11) 93.92(8) 163.46(9) 88.21(11) 89.26(16)	Mn1-N1 Mn1-Cl1a Mn1-N3a Mn2-Cl3 Mn2-Cl2 Mn2-N5 Cl2-Mn2-N7 Cl3-Mn2-N4 Cl1-Mn1-N1a Cl1a-Mn1-N1a N1-Mn1-N1a N3-Mn1-N3a Cl3-Mn2-N5 Cl3-Mn2-N5 Cl3-Mn2-N5 N4-Mn2-N5 N4-Mn2-N5	$\begin{array}{c} 2.300(3)\\ 2.4599(13)\\ 2.333(3)\\ 2.482(2)\\ 2.4202(15)\\ 2.275(5)\\ 93.45(12)\\ 164.53(11)\\ 91.33(8)\\ 91.33(8)\\ 171.48(12)\\ 71.40(11)\\ 94.96(12)\\ 87.67(12)\\ 102.17(13)\\ 72.22(15)\\ 85.70(14)\\ 73.18(16) \end{array}$
$wR_2 (I > 2\sigma(I))^a \Delta \rho$ maximum/minimum (e Å ³)	0.2762 -0.67, 1.43	0.1620 -0.41, 0.51	N5-Mn2-N6 N5-Mn2-N7 Cl2-Mn2-Cl3	98.12(16) 160.29(16) 97.35(7)	Cl2-Mn2-N4 Cl2-Mn2-N6 Cl2-Mn2-N5	92.28(9) 166.48(12) 93.97(12)

^a $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|, \ wR_2 = [\Sigma (w(F_o^2 - F_c^2)^2) / \Sigma w(F_o^2)^2]^{V_2}.$

Symmetry code: a = 1/2 - x, *y*, 1/2 - z.

Download English Version:

https://daneshyari.com/en/article/1337902

Download Persian Version:

https://daneshyari.com/article/1337902

Daneshyari.com