

Available online at www.sciencedirect.com

Polyhedron 26 (2007) 4825-4832

cis-Palladium(II) complexes of derivatives of di-(2-pyridyl)methane: Study of the influence of the bridge group in the coordination mode

Noemí Andrade-López *, José G. Alvarado-Rodríguez, Simplicio González-Montiel, María Guadalupe Rodríguez-Méndez, María Elena Páez-Hernández, Carlos Andrés Galán-Vidal

Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Ciudad Universitaria, Carretera Pachuca-Tulancingo, km 4.5, Pachuca Hidalgo, C.P. 42076, Mexico

> Received 7 February 2007; accepted 13 June 2007 Available online 22 June 2007

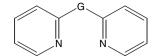
Abstract

Palladium(II) complexes containing di-(2-pyridyl)-*N*-methylimine (1), di-(2-pyridyl)methanol (2) and di-(2-pyridyl)methyl-*N*,*N*-diethyldithiocarbamate (4) ligands were synthesized and characterized by ¹H and ¹³C NMR in solution, IR and X-ray single crystal diffraction. Crystal structures of *cis*-dichloro[di-(2-pyridyl)-*N*-methylimine]palladium(II) (5), *cis*-dichloro[di-(2-pyridyl)methanol]palladium(II) (6) and *cis*-dichloro[di-(2-pyridyl)methyl-*N*,*N*-diethyldithiocarbamate]palladium(II) (7) showed a bidentate coordination mode of the di-(2-pyridyl)methane derivatives 1, 2 and 4. In these complexes is observed the formation of a five-membered chelate ring with the pyridinic ligands 2 and 4. In all complexes the palladium atom displays a distorted square planar geometry.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Pd(II) complexes; Di-(2-pyridyl)methane derivatives; X ray diffraction; NMR

1. Introduction


Several palladium(II) complexes derived from bidentate N,N'-ligands of the type I containing 2-pyridyl substituents (Fig. 1) have been described as stable catalysts for different carbon–carbon and carbon–nitrogen bond-forming reactions [1–6]. In these complexes, the di-2-pyridyl ligands have amino and amide groups as bridging moieties that mainly lead to the formation of six-membered chelate rings. Complexes of similar structure containing *cis*-dibromo- and dichloropalladium(II) fragments have also been reported [7,8]. On the other hand, dipyridinic analogues containing unsubstituted or substituted methylene as bridge groups

* Corresponding author. Tel./fax: +52 771 71 72000.

E-mail address: nandrade@uaeh.edu.mx (N. Andrade-López).

have been widely studied in coordination chemistry [9–13] and only some dichloropalladium(II) complexes have been structurally characterized by means of X-ray diffraction; in these complexes the ligand coordination mode is formally bidentate [6,9,13–17]. The paucity of these structural studies in palladium chemistry prompt us to evaluate the coordinative behavior of di-(2-pyridyl)methane ligands 1, 2 and 4, where the bridge carbon contains N-methylimine, hydroxy and N,N-diethyldithiocarbamate groups, respectively. In the present work, we report on the synthesis, mass spectra, NMR and crystal characterization of di-(2-pyridyl)methylchloride (3) and di-(2-pyridyl)methyl-N,N-diethyldithiocarbamate (4) ligands and cis-dichloro[di-(2-pyridyl)-Nmethylimine]palladium(II) (5), cis-dichloro[di-(2-pyridyl)methanol]palladium(II) (6) and cis-dichloro[di-(2-pyridyl)methyl-N,N-diethyldithiocarbamate]palladium(II) (7) complexes, Fig. 2.

^{0277-5387/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2007.06.006

G= CH₂, C(OH)₂, C(OH)(OMe), C=O, NH, O, S

Fig. 1. Di-(2-pyridyl) ligands.

2. Experimental

2.1. Reagents and general procedures

All manipulations of air and moisture sensitive materials were carried out under dinitrogen using Schlenk techniques. Solvents were dried before use by standard methods. Di-(2-pyridyl)ketone, NaS₂CNEt₂ · 3H₂O and PdCl₂ were obtained commercially (Aldrich) and used as received. Melting points were recorded on a Mel-Temp II apparatus and are uncorrected. EI mass spectra were recorded on a Hewlett Packard 5989A spectrometer and FAB-mass spectra on a Jeol JMS-AX505HA mass spectrometer. Elemental analyses were performed on a Finnigan Flash EA 1112NC. IR spectra were recorded on a FT-IR 200 Perkin-Elmer spectrophotometer in the 4000-400 cm⁻¹ range using KBr and CsI pellets. NMR spectra were recorded on a Jeol GSX 400 spectrometer. ^{11}H (399.78 MHz) and ^{13}C (100.53 MHz) spectra were obtained in DMSO- d_6 . Chemical shifts (ppm) are relative to Si(CH₃)₄. NMR assignments of 1-7 were made by two-dimensional heteronuclear and homonuclear correlation experiments (hetcor, coloc and cosy). Single-crystal X-ray structures determination of compounds 3-7 were performed at room temperature on a Bruker Smart 6000 CCD diffractometer using graphite monochromated Mo K α radiation (0.71073 Å). Structures of compounds **3–6** were solved by direct methods and the structure of the compound 7 was solved by Patterson method (SHEL-XTL NT 5.10) [18]. All non-hydrogen atoms were refined anisotropically. The positions of the hydrogen atoms were kept fixed with a common isotropic displacement parameter.

2.2. Synthesis of di-(2-pyridyl)methane ligands 1-4

Ligands 1 [19], 2 and 3 [20] were prepared as previously described; these ligands were characterized by means of NMR in CDCl₃ solution; for the sake of this work we have characterized them in DMSO- d_6 solution and reported below.

2.2.1. Di-(2-pyridyl)-N-methylimine (1)

Moisture-sensitive yellow solid. M.p. 67–68 °C. ¹H NMR (DMSO- d_6) δ : 8.66 (dd, 1H, H-12, ³ $J_{H12-H11}$ = 4.85 Hz, ⁴ $J_{H12-H10}$ = 1.83 Hz), 8.43 (dd, 1H, H-6, ³ J_{H6-H5} = 4.76 Hz, ⁴ J_{H6-H4} = 1.83 Hz), 8.14 (d, 1H, H-9, ³ J_{H9-H10} = 8.05 Hz), 7.89 (m, 2H, H-4, H-10), 7.42 (m, 2H, H-5, H-11,), 7.32 (dd, 1H, H-3, ³ J_{H3-H4} = 7.68, ⁴ J_{H3-H5} = 1.09 Hz), 3.19 (s, 3H, N-CH₃); ¹³C {¹H} NMR (DMSO- d_6) δ : 168.4 (C-13), 157.0 (C-2), 155.3 (C-8), 149.8 (C-12), 148.9 (C-6), 137.2 (C-4), 136.7 (C-10), 125.0 (C-5), 124.2 (C-3), 123.6 (C-11), 121.8 (C-9), 41.3 (N-CH₃).

2.2.2. Di-(2-pyridyl)methanol (2)

Yellow oil. ¹H NMR (DMSO-*d*₆) δ : 8.47 (d, 1H, H-6, ³*J*_{H6-H5} = 4.40 Hz), 7.78 (dd, 1H, H-4, ³*J*_{H4-H3} = 7.68, ³*J*_{H4-H5} = 7.72 Hz), 7.57 (d, 1H, H-3, ³*J*_{H3-H4} = 7.68 Hz), 7.22 (ddd, 1H, H-5, ³*J*_{H5-H6} = 4.40 Hz, ³*J*_{H5-H4}=7.72 Hz, ⁴*J*_{H4-H6} = 1.48 Hz), 6.28 (d, 1H, OH, ³*J*_{OH14-H13} = 4.76 Hz), 5.83 (d, 1H, CH-13, ³*J*_{H13-OH14} = 5.12 Hz); ¹³C {¹H} NMR (DMSO-*d*₆) δ : 163.2 (C-2), 148.9 (C-6), 137.2 (C-4), 122.9 (C-5), 121.7 (C-3), 77.5 (C-13).

2.2.3. Di-(2-pyridyl)methylchloride (3)

Colorless solid. Dec. 67–69 °C. ¹H NMR (DMSO- d_6) δ : 9.03 (d, 1H, H-6, ${}^{3}J_{H6-H5} = 5.12$ Hz); 8.19 (dd, 1H, H-4, ${}^{3}J_{H4-H3} = 7.32$ Hz, ${}^{3}J_{H4-H5} = 7.60$ Hz); 7.95 (d, 1H, H-3, ${}^{3}J_{H3-H4} = 7.32$ Hz); 7.68 (dd, 1H, H-5, ${}^{3}J_{H5-H6} = 5.12$ Hz, ${}^{3}J_{H5-H4} = 7.60$ Hz); 7.18 (s, 1H, CH-13). ${}^{13}C$ {¹H} NMR (DMSO- d_6) δ : 155.3 (C-6); 151.9 (C-2); 142.0 (C-4); 126.8 (C-5); 126.6 (C-3); 60.8 (C-13).

2.2.4. Di-(2-pyridyl)methyl-N,N-diethyldithiocarbamate (4)

A mixture of **3** (0.100 g, 0.443 mmol) and sodium diethyldithiocarbamate trihydrate (0.120 g, 0.532 mmol) in

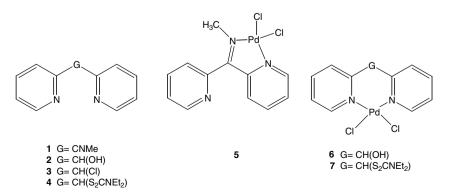


Fig. 2. Ligands and complexes synthesized.

Download English Version:

https://daneshyari.com/en/article/1338002

Download Persian Version:

https://daneshyari.com/article/1338002

Daneshyari.com