Coordination chemistry of bidentate phosphine ligands with hydrogen-bonding arms: Picket-fence rhodium complexes

Ilknur Babahan ${ }^{\text {a,b }}$, James T. Engle ${ }^{\text {c }}$, Nishant Kumar ${ }^{\text {b }}$, Christopher J. Ziegler ${ }^{\text {c,* }}$, Li Jia ${ }^{\text {a,* }}$
${ }^{\text {a }}$ The University of Akron, Good year Polymer Science, Akron, OH 44325, USA
${ }^{\mathrm{b}}$ Adnan Menderes University, Faculty of Science and Art, Department of Chemistry, 09010 Aydin, Turkey
${ }^{\text {c }}$ The University of Akron, Department of Chemistry, Akron, OH 44325, USA

A R T I C L E I N F O

Article history:

Received 25 September 2013
Accepted 18 November 2013
Available online 4 December 2013

Keywords:

Bidentate phosphine
Secondary interaction
Rhodium complex

Abstract

A bidentate phosphine ligand with two amide arms, designed to form hydrogen bonds with electrondonating moieties, was synthesized and isolated in high diastereomeric excess (95\% de). The hydrogen-bonding abilities of the ligand and its diastereomer were demonstrated with two rhodium complexes containing these ligands. The structures of the rhodium compounds are reminiscent of the well-studied picket-fence porphyrin systems.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Secondary ligand-ligand and ligand-substrate interactions play important roles in the catalytic transformations promoted by transition metal complexes [1] and as enzymatic models [2]. Among the various types of interactions, hydrogen bonds are useful, or even critical, in many cases of catalysis involving substrates containing oxygen and nitrogen atoms [3]. Given our interest in heterocycle carbonylation [4], we explored along this line in a limited scope. Here, we document the synthesis of a bidentate phosphine ligand with a capacity for hydrogen bonding and its rhodium coordination chemistry. The resultant Rh complexes resemble picket-fence porphyrins [5], which have been used as models for enzymatic active sites and for selective substrate binding.

2. Experimental

2.1. General remarks

All reactions and manipulations were performed under an inert atmosphere. All solvents were anhydrous and purchased from Sig-ma-Aldrich. NMR spectra were recorded on a Varian 300 MHz spectrometer. Bis(phenylphosphino)ethane, $\mathrm{PhP}(\mathrm{H})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}(\mathrm{H}) \mathrm{Ph}$, was prepared according to a literature procedure [6].

[^0]
2.2. Synthesis of $\mathbf{1 - C _ { s }}$

A $50-\mathrm{mL}$ flask was placed in an oil bath at $100^{\circ} \mathrm{C} . \mathrm{Ph}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2}$ $\mathrm{P}(\mathrm{H}) \mathrm{Ph}(1.24 \mathrm{~g}, 5.04 \mathrm{mmol})$, $\operatorname{AIBN}(\sim 50 \mathrm{mg})$, and $\mathrm{CH}_{2}=\mathrm{CHCONH}^{\mathrm{i} P r}$ $(1.26 \mathrm{~g}, 11.2 \mathrm{mmol})$ were added to this flask. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 1 h under a nitrogen atmosphere and then under vacuum for 24 h to remove the slightly excess amount of $\mathrm{CH}_{2}=-$ CHCONH ${ }^{i}$ Pr. The resultant oil was dissolved in boiling toluene $(20 \mathrm{~mL})$ and filtered while the solution was hot. The filtrate was kept at room temperature (RT) to allow precipitation of a white crystalline solid, which was washed with acetonitrile ($2 \times 5 \mathrm{~mL}$) and isolated after filtration (yield, $1.08 \mathrm{~g}, 45 \%$ in 95% diastereomeric excess).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.10$ ("triplet" arising from two partially overlapping doublets, $J=7.7 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}_{3}$), 1.63-1.75 (m, 4 H , $\left.-\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-\right), 1.96\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}-\right), 2.07\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CO}-\right.$), 4.02 (heptet, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}-$), 5.24 (b, $2 \mathrm{H},-\mathrm{NH}-$), 7.34 (m, $6 \mathrm{H}, \mathrm{CH}_{\text {aryl }}$), and $7.42\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{\text {aryl }}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $171.3,137.1,132.4,119.2,128.5,41.4,32.9,23.5,23.1,22.8$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-19.9$.

2.3. Collection of $\mathbf{1}-\boldsymbol{C}_{\boldsymbol{s}} / \mathbf{1}-\boldsymbol{C}_{\mathbf{2}}$ mixture

The toluene filtrate from the above experiment was kept at $-30^{\circ} \mathrm{C}$. A white crystalline solid again formed, and the isolated solid contained a mixture of $\mathbf{1}-\boldsymbol{C}_{s}$ and $\mathbf{1}-\boldsymbol{C}_{\mathbf{2}}$ in about a 1:3 ratio (yield, $0.30 \mathrm{~g}, 12 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.10$ ("triplet" arising from two partially overlapping doublets, $J=7.7 \mathrm{~Hz}$), $1.62-1.77\left(\mathrm{~m},-\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-\right)$, 1.96-1.99 (m, - $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}-$), 2.05-2.12 (m, $-\mathrm{CH}_{2} \mathrm{CO}-$), 3.97-4.05
(m, -CH-), 5.25 (b, -NH-), 7.34 (m, CH aryl), and 7.39-7.43 (m, $\left.\mathrm{CH}_{\text {aryl }}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-19.9(\mathrm{~s}),-20.0(\mathrm{~s})$.

2.4. Synthesis of $\mathbf{2}$

To a stirred solution of $\left[(\mathrm{CO})_{2} \mathrm{RhCl}\right]_{2}(100 \mathrm{mg}, 0.257 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added a solution of ligand $\mathbf{1 - C}$ (488 mg , $1.028 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at RT. A drop of $\mathrm{PEt}_{3}(\sim 50 \mathrm{mg})$ was added to the above solution, which was refluxed with stirring overnight. After all of the volatile compounds were removed under vacuum, the residue was washed with ether to give a bright yellow powder (yield, $0.50 \mathrm{~g}, 90 \%$). Analytically pure crystals were obtained by layering ether on top of a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the product.

Anal. Calc. for $\mathrm{C}_{52} \mathrm{H}_{76} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{Rh}$: C, 57.64; H, 7.07; N, 5.17. Found: C, 58.02; $\mathrm{H}, 6.69$; $\mathrm{N}, 4.87 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.23$ ("triplet" arising from two partially overlapping doublets, $J=7.7 \mathrm{~Hz}, 24$ $\left.\mathrm{H},-\mathrm{CH}_{3}\right), 1.90\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}-\right), 2.32\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-\right)$, $2.76\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-\right), 2.86\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-, 3.01(\mathrm{~m}\right.$, $\left.4 \mathrm{H},-\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-\right), 4.13$ (h, $4 \mathrm{H},-\mathrm{CH}-$), 7.06 ("t", $8 \mathrm{H}, \mathrm{CH}_{\text {aryl }}$), 7.26-7.16 (m, 12H, C $\underline{H}_{\text {aryl }}$), 8.68 (d, $\left.J=8.9 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{NH}-\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}): $\delta 170.1,133.9,131.2,130.1,128.4,41.7,31.1,28.7$, 23.4, 22.6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 57.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{Rh}-\mathrm{P}}=128 \mathrm{~Hz}\right)$.

2.5. Reaction of $\mathbf{1}-\mathbf{C}_{\boldsymbol{s}} / \mathbf{1}-\mathbf{C}_{\mathbf{2}}$ Mixture with $\left[(\mathrm{CO})_{2} \mathrm{RhCl}\right]_{2}$

The reaction between the $\mathbf{1 - C _ { s }} / \mathbf{1}-\mathbf{C}_{\mathbf{2}}$ mixture and $\left[(\mathrm{CO})_{2} \mathrm{RhCl}\right]_{2}$ was carried out in the same manner as described above. Judging from the ${ }^{1} \mathrm{H}$ NMR spectrum, the product was a complex mixture. However, single crystals of $\mathbf{3}$ were obtained by diffusion of diethyl ether into a solution of the reaction mixture.

2.6. X-ray data collection and structural analysis

Single crystals of $\mathbf{2}$ were grown by layering diethyl ether on top of a dichloromethane solution of $\mathbf{2}$ and allowing diffusion to occur at RT. Single crystals of $\mathbf{3}$ were grown by layering diethyl ether on top of a dichloromethane solution of the reaction mixture of $\mathbf{1 - C} \boldsymbol{C}_{\boldsymbol{s}}$, $\mathbf{1 - C} \mathbf{C}_{2}$, and $\left[(\mathrm{CO})_{2} \mathrm{RhCl}\right]_{2}$, and allowing diffusion to occur at RT.

2.7. Crystal data for $\mathbf{2}$

$\mathrm{C}_{52} \mathrm{H}_{76} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{RhCl}$., $\mathrm{Mw}=1083.41$, triclinic, space group $\mathrm{P}-1$, $a=12.572(2) \AA, \quad b=14.298(2) \AA, \quad c=16.199(2) \AA, \quad \alpha=98.590(2)^{\circ}$, $\beta=97.498(2)^{\circ}, \gamma=94.482(2)^{\circ}$, and volume $=2840.3(6) \AA^{3}, Z=2$, $\rho=1.267 \mathrm{~g} / \mathrm{cm}^{3}, R($ int $)=3.64 \%, R_{1}=4.31 \%, w R_{2}=9.90 \%$ for 9846 independent reflections, $I^{\circ}>2 \mathrm{~s}\left(I^{\circ}\right)$, with 19770 observed reflections. Data were collected at 293(2) K (Siemens smart Platform CCD diffractometer with Mo source $\mathrm{K} \alpha$ radiation, $\lambda=0.71073 \AA$) and corrected for absorption using sADABS [7]. The structures were solved by direct methods and refined by full-matrix least-squares procedures [8].

2.8. Crystal data for $\mathbf{3}$

$\mathrm{C}_{108} \mathrm{H}_{162} \mathrm{~N}_{8} \mathrm{O}_{9} \mathrm{P}_{8} \mathrm{Rh}_{2} \mathrm{Cl}_{2}$., $\mathrm{Mw}=2240.94$, monoclinic, space group $P 2(1) / c, \quad a=21.0259(12) \AA, \quad b=26.9157(16) \AA, \quad c=20.8978(12) \AA$, $\beta=103.669(3)^{\circ}$, volume $=11491.7(12) \AA^{3}, Z=4, \rho=1.295 \mathrm{~g} / \mathrm{cm}^{3}$, $R($ int $)=5.36 \%, R_{1}=4.84 \%, w R_{2}=12.59 \%$ for 18975 independent reflections, $I^{\circ}>2 s\left(I^{\circ}\right)$, with 127493 observed reflections. Data were collected at 100(2) K (APEX2 CCD diffractometer with Cu source $K \alpha$ radiation, $\lambda=1.54178 \AA$) and corrected for absorption using SADABS [7]. The structures were solved by direct methods and refined by full-matrix least-squares procedures [9].

Scheme 1. Synthesis of diphosphines with hydrogen-bonding arms and their Rh complexes.

3. Results and discussion

AIBN-initiated phosphine addition to acrylamide afforded a mixture of diastereomers $\mathbf{1 - C _ { \boldsymbol { s } }}$ and $\mathbf{1 - \boldsymbol { C } _ { \boldsymbol { 2 } }}$ in roughly a $2: 1$ ratio (Scheme 1). Ligand $\mathbf{1}-\boldsymbol{C}_{\boldsymbol{s}}$ ($\sim 95 \%$ diastereomeric excess, as estimated from ${ }^{31} \mathrm{P}$ NMR) was easily isolated from the mixture with a $\sim 45 \%$ yield by fractional crystallization from toluene. The racemic isomer $\mathbf{1}-\boldsymbol{C}_{\boldsymbol{2}}$ was not separated from the remaining $\mathbf{1}-\boldsymbol{C}_{\boldsymbol{s}}$ in the mixture. Interconversion between $\mathbf{1 - \boldsymbol { C } _ { \mathbf { 2 } }}$ and $\mathbf{1 - \boldsymbol { C } _ { \boldsymbol { s } }}$ was not observed in the solid state over months or days in solution at room temperature. When we attempted to make the Rh complex $\left[\left(\mathbf{1}-\mathrm{C}_{s}\right) \cdot \mathrm{Rh}(\mathrm{CO}) \mathrm{Cl}\right]$ by reacting equimolar amounts of $\mathbf{1}-\boldsymbol{C}_{\boldsymbol{s}}$ and $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$, the reaction did not give the expected 1:1 ligand-Rh adduct. Instead, a complex mixture resulted as judged from the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra. In an attempt to make $\left[(\mathbf{1 - C} \mathbf{C}) \cdot \operatorname{Rh}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}\right], \mathbf{2}$ formed unexpectedly. Indeed, the initial mixture from the reaction of $\mathbf{1 - \boldsymbol { C } _ { s }}$ and [$\left.\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]$ cleanly converged to $\mathbf{2}$ after it was refluxed overnight in the presence of a substoichiometric amount of PEt_{3}. The yield of $\mathbf{2}$ was essentially quantitative when a $2: 1$ ligand: Rh molar ratio was used. Compound 2 was stable in air in the solid form indefinitely, whereas $\mathbf{1}-\boldsymbol{C}_{\boldsymbol{s}}$ had to be stored under an inert atmosphere. Compound 2 was completely characterized by standard spectroscopic methods and elemental analysis. X-ray diffraction (XRD) of a single crystal of $\mathbf{2}$ revealed a picket fence-like structure in pseudo- $C_{2 v}$ symmetry (Fig. 1). The four P atoms and the Rh atom were approximately coplanar. The $\mathrm{Rh}-\mathrm{Cl}$ distance was $\sim 5.16 \AA$, clearly outside the range of covalent bonding. ${ }^{1}$ The four amide arms of the ligand surrounded the chloride ion, with the four N atoms pointing toward the chloride. Although the hydrogen atoms were not located directly on the difference map, this configuration suggests that each N atom was bonded with the chloride through a hydrogen bond. The $\mathrm{N}-\mathrm{Cl}$ distances were $\sim 3.33,3.28,3.42$, and $3.29 \AA$, all of which are in the range of $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Infrared (IR) spectroscopy indicated that the amide hydrogen bonds [10] in $\mathbf{2}$ were largely retained in the chloroform solution (Fig. 2), especially when compared with the ligand $\mathbf{1 - C} \boldsymbol{C}_{\text {s }}$. In the $\mathrm{N}-\mathrm{H}$ stretching vibration region of the IR spectrum of $\mathbf{2}$, a sizable

[^1]
https://daneshyari.com/en/article/1338073

Download Persian Version:
https://daneshyari.com/article/1338073

Daneshyari.com

[^0]: * Corresponding authors. Tel.: +1 330972 7511; fax: +1 3309725290 (L. Jia). Tel.:
 +1 330972 2531; fax: +1 3309726085 (C.J. Ziegler).
 E-mail addresses: ziegler@uakron.edu (C.J. Ziegler), ljia@uakron.edu (L. Jia).

[^1]: ${ }^{1}$ The Cl atom was located normally on the difference map. No disorder is present in the position of the chloride.

