Polyhedron 30 (2011) 1070-1075

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

New d¹⁰ heterometallic coordination polymers based on compartmental Schiff-base ligands. Synthesis, structure and luminescence

Gabriela Marinescu^{a,b,*}, Augustin M. Madalan^{b,*}, Carmen Tiseanu^c, Marius Andruh^b

^a Coordination Chemistry Laboratory, Institute of Physical Chemistry of the Romanian Academy, Bucharest, Spl. Independentei nr. 202, 060021 Bucharest, Romania ^b University of Bucharest, Faculty of Chemistry, Inorganic Chemistry Laboratory, Str. Dumbrava Rosie nr. 23, 020464 Bucharest, Romania

^c National Institute for Laser, Plasma and Radiation Physics, Laboratory of Solid-State Quantum Electronics, P.O. Box MG-36, Magurele 077125, Romania

ARTICLE INFO

Article history: Received 13 October 2010 Accepted 5 January 2011 Available online 18 January 2011

Keywords: Heterometallic complexes Zinc complexes Silver complexes Gold complexes Schiff base ligands Luminescence

ABSTRACT

The self-assembly processes between binuclear $[Zn_2L^n]^{2+}$ complex cations and complex anions, $[M(CN)_2]^-$ [M(I) = Ag(I), Au(I)], generate new one-dimensional (1-D) coordination polymers: $1_{\infty}[\{L^1Zn_2(\mu_3-OH)\}_2(H_2O)\{\mu-[Ag(CN)_2]\}](CIO_4)_3$ THF 0.5MeOH **1**, $1_{\infty}[\{L^1Zn_2(\mu_3-OH)\}_2(H_2O)\{\mu-[Au(CN)_2]\}](CIO_4)_3$ THF 4.20 **2**, $1_{\infty}[\{L^2Zn_2(\mu-OH)\}\{\mu-[Ag(CN)_2]\}][Ag(CN)_2] H_2O$ **3** $(H_2L^n$ are bicompartmental Schiff-base ligands resulting from condensation reactions between 2,6-diformyl-*p*-cresol with 2-aminomethyl-pyridine, and 2-aminoethyl-pyridine, respectively). The luminescence properties of the new heterometallic complexes have been investigated.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The considerable interest in designing new coordination polymers emerges not only from their potential applications in electronics, luminescence, catalysis, magnetism and molecular recognition [1], but also from their intriguing structural topologies [2–7]. The self-assembly process of metal ions with *exo*-dentate (divergent) ligands is an efficient and widely used strategy for the construction of such polymers (node-and-spacer approach) [8]. A major challenge in this approach is to predict the topology of the polymeric structure, since many factors are involved in the framework formation (the stereochemical preferences of the metal ions, the nature of the ligands, the metal-to-ligand ratio, the reaction temperature, the solvent, and the pH of the solution) [9].

The luminescent metal complexes of d¹⁰ metal ions [*e.g.* zinc(II), cadmium(II), copper(I), silver(I) and gold(I)] have grown into a very active research area. Due to the flexibility of their stereochemistry, they can coordinate various ligands, leading to systems exhibiting interesting structural features and potential applications in light emitting diodes (LEDs), biomedical analyses, fluorescence imaging and cancer phototherapy [10,11].

The Schiff-bases are widely employed as ligands in coordination chemistry [12,13]. These ligands are readily available, versatile and allow a good control over the stereochemistry of the metallic centers, as well as over the nuclearity of the complexes, by the appropriate selection of the starting materials (carbonyl precursors and primary amines) [14]. All these advantages make Schiff bases very good candidates in the effort to synthesize metal complexes of interest in bioinorganic chemistry, catalysis, encapsulation, transport and separation processes, magnetochemistry [14]. An important class of Schiff base ligands is represented by organic molecules able to accommodate two metal ions (compartmental ligands) [14].

In a series of papers, we have shown that tetranuclear complexes and coordination polymers with interesting topologies can be obtained employing binuclear complexes as nodes and various bridging ligands [*e.g.* 4,4'-bipyridine, bis(4-pyridyl)ethane, bis (4-pyridyl)ethylene] [15]. The formation of the dinuclear nodes in a preliminary step succeeds using compartmental ligands, which hold together two metal ions. Such ligands can be either end-off, side-off, or macrocyclic species, some of them being obtained by reacting 2,6-diformyl-*p*-cresol with different diamines (*e.g. N*,*N*-dimethyl-ethylenediamine, 2-aminomethyl-pyridine or 2-aminoethyl-pyridine – Scheme 1).

McGillivray and coworkers have reported an 1-D coordination polymers, which undergoes photodimerization in the solid state, by connecting the dinuclear zinc complexes through bis(4-pyridyl)ethylene [16].

^{*} Corresponding authors. Address: Coordination Chemistry Laboratory, Institute of Physical Chemistry of the Romanian Academy, Bucharest, Spl. Independentei nr. 202, 060021 Bucharest, Romania. Tel.: +40 021 316 79 12, fax: +40 021 312 11 47.

E-mail addresses: gabriela_marinescu02@yahoo.com (G. Marinescu), madalin. madalan@g.unibuc.ro (A.M. Madalan).

^{0277-5387/\$ -} see front matter \circledcirc 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2011.01.001

Scheme 1. Schematic molecular structures of ligands, HL¹ and HL².

In a recent paper, we showed that the self-assembly processes between binuclear [Zn₂] complex cation and *exo*-bidentate ligands [e.g. 4,4'-bipyridine, bis(4-pyridyl)ethane] generate one-dimensional coordination polymers with interesting luminescence properties [15i].

In this work, we have extended our investigations to other category of spacers namely anionic metal-complexes containing potentially bridging ligands, $[M(CN)_2]^-$, M(I) = Ag(I), Au(I). These species carry an additional element which can determine the final crystalline architecture, through the metallophilic interactions, representing also a new luminophoric source.

2. Experimental section

Syntheses of ${}^{1}_{\infty}[{L^{1}Zn_{2}(\mu_{3}-OH)}_{2}(H_{2}O){\mu-[Ag(CN)_{2}]}](ClO_{4})_{3}$. THF 0.5MeOH **1**, ${}^{1}_{\infty}[\{L^{1}Zn_{2}(\mu_{3}-OH)\}_{2}(H_{2}O)\{\mu-[Au(CN)_{2}]\}](ClO_{4})_{3}$. $THF \cdot H_2O \ \textbf{2}, \ {}^1_{\infty}[\{L^2Zn_2(\mu - OH)\}\{\mu - [Ag(CN)_2]\}][Ag(CN)_2] \cdot H_2O \ \textbf{3}. \ All$ starting materials were of reagent grade and were used without further purification. The binuclear precursors were synthesized in situ, by re

2.1. Synthese THF-0.5MeOH

The tetra amounts of methyl-pyri

Table 1

Largest diff peak and hole (e Å⁻³)

Crystallographi

0.816, -0.783

Eacting the Schiff basis and the schiff basis of ${}^{1}_{\infty}[{L^{1}Zn_{2}(_{3}-OH)]}$ (4 (1) (hydrofuran (THF) s 2,6-diformyl- <i>p</i> -cres dine (0.2 mmol, 5 t	ses with zinc perchlorate.) $_{2}(H_{2}O)\{-[Ag(CN)_{2}]\}](ClO_{4})_{3}$. olutions containing stoichiometric ol (0.1 mmol, 10 mL) and 2-amino- mL) were mixed and kept under	and Zn(ClO ₄) ₂ ·6H ₂ O (0.2 mmol, 10 mL N stirring for 30 min. An aqueous solution K[Ag(CN) ₂] (0.1 mmol) was added to t dinuclear precursor [L ² Zn ₂ (μ-OH)](ClO of the mixture at room temperature, in several days to yellow crystals. Yield ca analysis: 37.84% C, 3.06% H, 13.07% N 13.12% N (found). IR data (KBr, cm ⁻¹	MeOH:ACN) and kept under on (10 mL) containing the he solution containing the $_{4}$) ₂ . The slow evaporation a dark recipient, led after a. 60%. Elemental chemical (calc.); 38.05% C, 2.90% H, '): 3498s, 3369m, 2921w,
c data, details of data col	lection and structure refinement parameters fo	r compounds 1–3.	
	1	2	3
rmula	$C_{48.50}H_{52}AgCl_3N_{10}O_{18.50}Zn_4$	$C_{48}H_{52}AuCl_3N_{10}O_{19}Zn_4$	$C_{27}H_{26}Ag_2N_8O_3Zn_2$
	1546.67	1637.76	857.02
e, (K)	293	293	293
, (Å)	0.71073	0.71073	0.71073
em	monoclinic	monoclinic	triclinic
		D21/a	
	P21/a	121/4	P-1
	P21/a 14.4552(6)	14.3505(4)	<i>P-1</i> 11.1217(10)
	P21/a 14.4552(6) 16.8840(8)	14.3505(4) 16.8848(4)	P-1 11.1217(10) 11.9903(9)

continuous stirring for 30 min at 50 °C. This solution was then reacted with the stoichiometric amounts of LiOH (0.1 mmol, 5 mL H_2O) and $Zn(ClO_4)_2 \cdot 6H_2O$ (0.2 mmol. 10 mL THF) and kept under stirring for 30 min. The yellow single-crystals of the compound 1 were obtained by slow diffusion (in a 20 mm diameter test tube at room temperature), of the THF solution of binuclear compound obtained as above through a methanol layer (2 mL) into an aqueous solution (2 mL) of K[Ag(CN)₂] (0.1 mmol), after several days. Yield ca. 75%. Elemental chemical analysis: 37.61% C, 3.42% H, 9.14% N (calc.); 37.70% C, 3.09% H, 9.15% N (found). IR data (KBr, cm⁻¹): 3566m, 3394m, 3040w, 2907w, 2174i, 2140w, 1652s, 1553s, 1488m, 1419s, 1327m, 1290m, 1239m, 1092vs, 1024 shoulder, 882w, 826s, 765s, 624s, 557w, 474w.

2.2. Syntheses of ${}^{1}_{\infty}[{L^{1}Zn_{2}(\mu_{3}-OH)}_{2}(H_{2}O)$ $\{\mu - [Au(CN)_2]\}](ClO_4)_3 \cdot THF \cdot H_2O(2)$

Compound 2 has been obtained following the same general procedure described for ${}^{1}_{\infty}[{L^{1}Zn_{2}(\mu_{3}-OH)}_{2}(H_{2}O){\mu-[Ag(CN)_{2}]}]$ (ClO₄)₃ THF 0.5MeOH (1), using K[Au(CN)₂] instead of K[Ag(CN)₂]. Yield ca. 70%. Elemental chemical analysis: 35.20% C, 3.20% H, 8.55% N (calc.); 35.28% C, 2.90% H, 8.60% N (found). IR data (KBr, cm⁻¹): 3510m, 3449m, 2966w, 2901w, 2863w, 2188s, 2145w, 1651vs, 1609s, 1552s, 1489m, 1447w, 1420s, 1332m, 1291m, 1239m, 1108vs, 1069vs, 975w, 873w, 828m, 766s, 624vs, 555w, 471m, 413w.

2.3. Syntheses of ${}^{1}_{\infty}[{L^{2}Zn_{2}(\mu-OH)}{\mu-[Ag(CN)_{2}]}][Ag(CN)_{2}] \cdot H_{2}O(\mathbf{3})$

Two solutions containing stoichiometric amounts of 2,6-diformyl-p-cresol (0.1 mmol, 10 mL of 1:1 methanol:acetonitrile mixture) and 2-aminoethyl-pyridine (0.2 mmol, 5 mL of 1:1 MeOH:ACN mixture) were mixed and kept under continuous stirring for 30 min at 50 °C. The resulting solution was then reacted with the stoichiometric amounts of LiOH (0.1 mmol, 5 mL H₂O)

Compound	1	2	3
Chemical formula	C _{48.50} H ₅₂ AgCl ₃ N ₁₀ O _{18.50} Zn ₄	C48H52AuCl3N10O19Zn4	C ₂₇ H ₂₆ Ag ₂ N ₈ O ₃ Zn
$M (\text{g mol}^{-1})$	1546.67	1637.76	857.02
Temperature, (K)	293	293	293
Wavelength, (Å)	0.71073	0.71073	0.71073
Crystal system	monoclinic	monoclinic	triclinic
Space group	P21/a	P21/a	P-1
a (Å)	14.4552(6)	14.3505(4)	11.1217(10)
b (Å)	16.8840(8)	16.8848(4)	11.9903(9)
c (Å)	25.0547(10)	25.1038(11)	13.7892(12)
α (°)	90	90	74.510(6)
β (°)	103.119(3)	103.418(3)	76.774(7)
γ (°)	90	90	62.707(6)
$V(Å^3)$	5955.3(4)	5916.7(3)	1562.6(20)
Ζ	4	4	2
$D_{c} (g cm^{-3})$	1.721	1.834	1.817
$\mu (\mathrm{mm}^{-1})$	2.124	4.284	2.793
F(000)	3100	3232	840
Goodness-of-fit on F^2	1.065	1.065	1.095
Final R_1 , w R_2 [I > $2\sigma(I)$]	0.0798, 0.1855	0.0650, 0.1576	0.0798, 0.2114
R_1 , w R_2 (all data)	0.1217, 0.2036	0.0891, 0.1708	0.0926, 0.2183

2.198, -2.800

1.185, -1.132

Download English Version:

https://daneshyari.com/en/article/1338128

Download Persian Version:

https://daneshyari.com/article/1338128

Daneshyari.com