ELSEVIER

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Synthesis and characterization of Co(II) and Ni(II) complexes of 2,5-diphenyl-3,4-bis(2-pyridyl)-cyclopentadienone (L). X-ray crystal structures of CoLCl₂·0.5CH₃CN and NiLBr₂·CHCl₃

Mehdi Amirnasr^{a,*}, Vratislav Langer^b, Ahmad Amiri^a, Shadpour Mallakpour^a, Farzaneh Afshar^a

ARTICLE INFO

Article history: Received 5 June 2009 Accepted 26 November 2009 Available online 1 December 2009

Keywords: Chelates Cobalt(II) Nickel(II) Pseudotetrahedral Crystal structures

ABSTRACT

The preparation and properties of [M(chelate)X₂] complexes are reported, where M = Co(II) or Ni(II), chelate = 2,5-diphenyl-3,4-bis(2-pyridyl)cyclopentadienone and X = Cl or Br. These complexes have been characterized by elemental analyses and spectroscopic methods. The crystal and molecular structures of CoLCl₂·0.5CH₃CN (1) and NiLBr₂·CHCl₃ (4) have been determined by X-ray crystallography. Compound (1) crystallizes in the triclinic space group $P\bar{1}$, different from that of CoLCl₂ (monoclinic space group $P2_1/c$) that we have reported previously. Compound (4) crystallizes in the monoclinic space group $P2_1/n$. Both CoLCl₂ and NiLBr₂ complexes are pseudo-tetrahedral, and utilization is made of the electronic and vibrational spectra in the structural diagnosis of CoLBr₂ and NiLCl₂.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The formation and characterization of complexes of the type MLX₂, where M = Co(II), Ni(II), L = ligands formed by the linkage of two pyridine residues, in the ortho position, by various groups such as $-CH_2CH_2-$, -SS-, -N=N-, -NH-, etc., and X = CI, Br, I, NCS, have been the subject of considerable interest [1-8]. The ligands show unusual adaptability to different environments and result in the formation of structurally different complexes depending on their modes of coordination and the conformations of the coordinated L ligands. Steric effects and internal strain are expected to be different in these complexes and, depending on the structures of 1,2-di(2'pyridyl) ligands and the stability of their compounds, synthetic conditions may vary from one group of complexes to another. In this paper we report the synthesis and characterization of a series of new MLX₂ complexes with internal strain imparted by the structurally rigid L ligand, Scheme 1. We also report the X-ray structural analysis of CoLCl₂·0.5CH₃CN and NiLBr₂·CHCl₃ complexes.

2. Experimental

2.1. Materials

Solvents and starting materials were obtained from Fluka and Aldrich and used as received. The red ligand L was prepared by thermal dehydration of its white diol precursor, LH₂(OH)₂, over silica gel as reported elsewhere [9]. Electronic spectra in solution were recorded on a JASCO V-570 spectrophotometer. IR spectra were recorded as KBr pellets on a FT-IR JASCO 680 PLUS instrument. Elemental analyses were performed by using a Perkin–Elmer 2400II CHNS/O analyzer.

2.2. Synthesis of complexes

2.2.1. CoLCl₂·0.5CH₃CN (**1**)

A solution of the ligand L (0.193 g, 0.5 mmol) in chloroform (40 mL) was added to a suspension of CoCl₂ (0.091 g, 0.7 mmol) in chloroform (10 mL). The reaction mixture was stirred at room temperature for 3 h to give a cherry red solution. The unreacted CoCl₂ was removed by filtration and the filtrate was left in the hood for two days to give dark red crystals of CoLCl₂ in 95% yield (based on the ligand L). The product was recrystallized from a mixture of chloroform–acetonitrile (20:1 v/v) to give dark crystals of X-ray quality which were washed and dried in air. *Anal.* Calc. for C₂₇H₁₈Cl₂CoN₂O·0.5CH₃CN: C, 62.65; H, 3.66; N, 6.52. Found: C, 62.4; H, 3.60; N, 6.60%. IR (KBr pellets, v/cm^{-1}): v(C=0) 1715(s); v(C=N) py) and v(C=C) aromatic) 1599, 1566, 1493, 1473, 1440(m); v(C=N) acetonitrile) 2250(w).

2.2.2. CoLBr₂ (2)

This complex was prepared as described for compound 1 except that stoichiometric amounts of $CoBr_2$ and L (0.5 mmol) were used

^a Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran

b Environmental Inorganic Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

^{*} Corresponding author. Tel.: +98 311 3912351; fax: +98 311 3912350. E-mail address: amirnasr@cc.iut.ac.ir (M. Amirnasr).

Scheme 1. Structural formulas of the complexes.

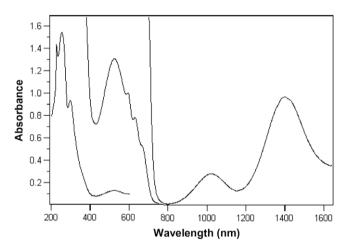
and the reaction mixture was stirred for 12 h. Red purple needle like crystals of CoLBr $_2$ were obtained in 73% yield (based on the ligand L) from the final filtrate after two days. The product was recrystallized from chloroform and dried in air. *Anal.* Calc. for C $_{27}$ H $_{18}$ Br $_{2}$ CoN $_{2}$ O: C, 53.59; H, 3.00; N, 4.63. Found: C, 53.90; H, 3.00; N, 4.40%. IR (KBr pellets, v/cm^{-1}): 3050 v(CH); v(C=O)1718(s); v(C=N) py) and v(C=C) aromatic) 1595, 1560, 1490, 1470, 1440(m).

2.2.3. NiLCl₂ (3)

This complex was prepared as described for compound (1) except that $NiCl_2$ was used in excess ($Ni/L\cong 2$, 1/0.5 mmol), and the reaction mixture in chloroform was stirred for 60 h. The product

Table 1
Crystal and structure refinement data for CoLCl₂·0.5CH₃CN (1) and NiLBr₂·CHCl₃ (4).

Compound	1	4
Empirical formula	C ₅₆ H ₃₉ Cl ₄ Co ₂ N ₅ O ₂	C ₂₈ H ₁₉ Br ₂ Cl ₃ NiN ₂ O
Formula weight	1073.58	724.33
T (K)	153(2)	153(2)
Crystal system	triclinic	monoclinic
Crystal size (mm)	$0.94\times0.22\times0.08$	$0.68\times0.18\times0.17$
Space group	$P\bar{1}$	$P2_1/n$
a (Å)	8.7243(4)	7.0124(14)
b (Å)	16.6040(8)	21.595(4)
c (Å)	17.7740(9)	18.916(4)
α (°)	77.328(1)	90
β (°)	84.773(1)	96.041(4)
γ (°)	77.157(1)	90
$V(Å^3)$	2446.7(2)	2848.7(10)
Z , $D_{\rm calc}$ (g cm ⁻³)	2, 1.457	4, 1.689
μ (mm $^{-1}$)	0.945	3.793
F(0 0 0)	1096	1432
θ Range for data collection (°)	2.35-33.08	2.17-28.67
Index ranges	$-13 \leqslant h \leqslant 13$	$-9 \leqslant h \leqslant 9$
	$-25 \leqslant k \leqslant 25$	$-29 \leqslant k \leqslant 29$
	$-27 \leqslant l \leqslant 26$	$-25 \leqslant l \leqslant 25$
Reflections collected	44678	39897
Independent reflections	17336	7291
R _{int}	0.0226	0.0524
Completeness to θ (°)	31.00, 99.5%	28.67, 99.3%
Maximum and minimum transmission	0.9282, 0.7153	0.5648, 0.1983
Data/parameters	17336/623	7291/334
Good-of-fit on F ²	1.002	1.008
R_1/wR_2 for observed reflection $[I > 2\sigma(I)]$	0.0315/0.0822	0.0401/0.0945
R_1/wR_2 for all data	0.0419/0.0873	0.0623/0.1074
Largest resolution peak/ hole(e Å ⁻³)	0.566/-0.272	1.037/-0.692


was obtained as a red purple powder in 70% yield (based on the ligand L). The complex was recrystallized from dichloromethane and dried in air. *Anal.* Calc. for $C_{27}H_{18}Cl_2NiN_2O$ (516.05): C, 62.84; H, 3.52; N, 5.43. Found: C, 62.70; H, 3.40; N, 5.32%. IR (KBr pellets, v/cm^{-1}): v(C=O) 1717(s); v(C=N) py) and v(C=C) aromatic) 1599, 1567, 1494, 1473, 1442(m).

2.2.4. NiLBr₂·CHCl₃ (**4**)

This complex was prepared as described for compound ${\bf 1}$ except that stoichiometric amounts of NiBr₂ and L (0.5 mmol) were used

Table 2 Electronic absorption spectral data for **1–4** and the red L, λ/nm ($\epsilon/\text{L mol}^{-1}$ cm⁻¹).

CoLCl ₂ (1)	$CoLBr_2$ (2)	$NiLCl_2$ (3)	$NiLBr_2$ (4)	Red L
254 (24324) 287 (12622) 360 (3250) 510 (1488) 569 (1183) 610 (795) 650 (465) 985 (19) 1340 (73)	255 (21830) 288 (12341) 360 (3162) 512 (1625) 594 (1112) 626 (895) 664 (626) 1020 (24) 1400 (112)	260 (17860) 292 (11800) 360 (2850) 521 (1504) 852 (10) 984 (44)	255 (18700) 296 (14000) 360 (2540) 526 (1700) 888 (26) 1007 (51)	258(20090) 324(5012) 492(1167)

Fig. 1. UV–Vis spectrum of CoLBr $_2$ (400–200 nm, 7.1 × 10 $^{-5}$ M; 800–400 nm, 8.0 × 10 $^{-4}$ M; 1600–800 nm, 8.8 × 10 $^{-3}$ M) in CH $_2$ Cl $_2$.

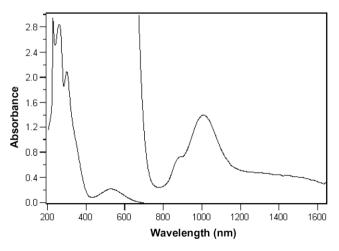


Fig. 2. UV–Vis spectrum of NiLBr $_2$ (700–200 nm, 1.5×10^{-4} M; 1600–700 nm, 2.45×10^{-2} M) in CH $_2$ Cl $_2$.

Download English Version:

https://daneshyari.com/en/article/1339309

Download Persian Version:

https://daneshyari.com/article/1339309

Daneshyari.com