

CO substitution in H₄Ru₄(CO)₁₂ by the diphosphine ligands 1,2-bis(diphenylphosphino)benzene (dppbz) and 1,8-bis(diphenylphosphino)naphthalene (dppn): X-ray diffraction structures of the diphosphine-chelated clusters 1,1-H₄Ru₄(CO)₁₀(dppbz) and 1,1-H₄Ru₄(CO)₁₀(dppn)

Vladimir N. Nesterov ^{a,*}, William H. Watson ^{b,*}, Srikanth Kandala ^c, Michael G. Richmond ^{c,*}

Department of Chemistry, New Mexico Highlands University, Las Vegas, NM 87701, United States
Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, United States
Department of Chemistry, University of North Texas, Denton, TX 76203, United States

Received 30 December 2006; accepted 26 March 2007 Available online 30 March 2007

Abstract

The reaction of the diphosphine ligands 1,2-bis(diphenylphosphino)benzene (dppbz) and 1,8-bis(diphenylphosphino)naphthalene (dppn) with the hydride-bridged cluster $H_4Ru_4(CO)_{12}$ (1) has been investigated under thermal and Me_3NO activation conditions. Both activation methods furnish the diphosphine-substituted clusters 1,1- $H_4Ru_4(CO)_{10}(P-P)$ (where P-P=dppbz, dppn) as the sole isolable products. The chelating coordination mode adopted by the ancillary diphosphine ligands has been confirmed by NMR spectroscopies and X-ray crystallography. The stability of the new clusters 1,1- $H_4Ru_4(CO)_{10}(dppbz)$ and 1,1- $H_4Ru_4(CO)_{10}(dppn)$ has been examined, and both clusters have been found to be stable at elevated temperatures in toluene and extended near-UV photolysis. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Diphosphine ligands; Ligand substitution; Ruthenium clusters

1. Introduction

The substitution chemistry and reactivity study of ruthenium clusters containing diphosphine ligands have continued to occupy the attention and efforts of our research groups [1]. While many different types of diphosphine ligands exist, we have had a particular interest in unsaturated diphosphines that possess a rigid carbon backbone. Here the ancillary π system associated with the

E-mail addresses: vnesterov@nmhu.edu (V.N. Nesterov), w.watson@tcu.edu (W.H. Watson), cobalt@unt.edu (M.G. Richmond).

unsaturated ligand platform has been shown to trigger cluster fragmentation in a manner unparalleled to that of the corresponding saturated ligand counterparts. One of the first examples demonstrating this aspect of enhanced lability comes from the reaction of Ru₃(CO)₁₂ with (*Z*)-Ph₂PCH=CHPPh₂. The initially formed cluster 1, 1-Ru₃(CO)₁₀[(*Z*)-Ph₂PCH= CHPPh₂], which contains a chelating diphosphine ligand, is unstable and transforms into the donor–acceptor diruthenium compound Ru₂-(CO)₆[(*Z*)-Ph₂PCH=CHPPh₂] on mild heating [2,3]. Accompanying this reaction is the release of Ru(CO)₄ that subsequently trimerizes to afford Ru₃(CO)₁₂. Another example of unprecedented reactivity between a metal cluster and an unsaturated diphosphine ligand involves the reaction of the hexaruthenium cluster Ru₆(μ₆-C)(CO)₁₇

^{*} Corresponding authors. Tel.: +1 505 454 3464 (V.N. Nesterov); tel.: +1 817 257 7195 (W.H. Watson); tel.: +1 940 565 3548; fax: +1 940 565 4318 (M.G. Richmond).

with dppbz. It is believed that the chelation of the dppbz ligand to $Ru_6(\mu_6\text{-}C)(CO)_{17}$ leads to a polyhedral expansion of the ruthenium core, coupled with the scavenging of phosphorus and hydrogen atoms from an additional dppbz ligand to furnish the edge-bridged cluster $HRu_6(\mu_5\text{-}C)(\mu_3\text{-}P)(CO)_{14}(dppbz)$ [4]. These novel reactions are depicted in Eqs. (1) and (2).

The reaction between the ruthenium cluster Ru₃(CO)₁₂ and myriad diphosphine ligands has been thoroughly explored over the last three decades [5]. The formal replacement of two carbonyl groups by the diphosphine ligand affords the corresponding cluster Ru₃(CO)₁₀(P-P), where the diphosphine ligand (P-P) may be coordinated to the cluster frame across adjacent ruthenium centers (bridging) or at a single metal center (chelating). Numerous examples exist for both P-P ligand coordination modes. The study of Ru₃(CO)₁₀(P-P) clusters has provided valuable insight into the stability of diphosphine ligands (P-P) relative to deleterious ligand decomposition through P-C bond cleavage, C-H bond ortho metalation, and cyclometalation pathways [6]. The observed degradation of phosphine ligands at well-defined metal complexes provides crucial evidence that debunks the innocent or spectator status of such ligands [7]. In comparison, the reactivity of diphosphine ligands with the hydride-bridged cluster H₄Ru₄(CO)₁₂ (1) has received scant attention vis-a-vis Ru₃(CO)₁₂. Other than our recent report on the synthesis and structural characterization of 1,1- $H_4Ru_4(CO)_{10}[(Z)-Ph_2PCH=CHPPh_2]$ and $1,1-H_4Ru_4-$ (CO)₁₀(bpcd), whose structures are shown below, there exist no other examples for the reaction of H₄Ru₄(CO)₁₂ with rigid, unsaturated diphosphine ligands [8,9]. The diphosphine ligands (Z)-Ph₂PCH=CHPPh₂ and bpcd react with cluster 1 to give the diphosphine-chelated clusters without any sign of the corresponding diphosphine-bridged species.

Wishing to establish the generality of ligand chelation at cluster 1 with other unsaturated diphosphine ligands, we have investigated the thermal and Me₃NO oxidative-decarbonylation activation of cluster 1 in the presence of the ligands 1,2-bis(diphenylphosphino)-benzene (dppbz) and 1,8-bis(diphenylphosphino)naphthalene (dppn). The course of these substitution reactions has been established through NMR spectroscopies and X-ray crystallographic analyses of the cluster compounds $H_4Ru_4(CO)_{10}(dppbz)$ (2) and $H_4Ru_4(CO)_{10}(dppn)$ (3). The thermal and photochemical stability of both product clusters have been investigated, with the results discussed relative to other diphosphine-substituted ruthenium clusters.

2. Experimental

2.1. General

The starting hydride cluster H₄Ru₄(CO)₁₂ (1) was prepared from Ru₃(CO)₁₂ and H₂ according to the published procedure [10], with the Ru₃(CO)₁₂ synthesized from hydrated RuCl₃ and CO using a 11 Parr Series 4000 rocking autoclave [11]. The dppn ligand was prepared from 1-bromonaphthalene and Ph₂PCl [12]. The chemicals 1-bromonaphthalene, dppbz, and Me₃NO · nH₂O were purchased from Aldrich Chemical Co. The Me₃NO · nH₂O was dried by azeotropic distillation from benzene and the anhydrous Me₃NO was stored in a Schlenk tube under argon. All reaction, IR, and NMR solvents were of reagent grade and were distilled from a suitable drying agent and stored in Schlenk vessels equipped with Teflon stopcocks [13]. The combustion analyses were performed by Atlantic Microlab, Norcross, GA.

The IR spectral data were recorded on a Nicolet 20 SXB FT-IR spectrometer in sealed 0.1 mm NaCl cells, while the $^1\mathrm{H}$ NMR (200 MHz) and $^{31}\mathrm{P}$ NMR (121 MHz) spectra were recorded on Varian Gemini-200 and 300-VXR spectrometers, respectively. The $^{31}\mathrm{P}$ NMR spectra were collected in the proton-decoupled mode with the reported chemical shifts referenced to external $\mathrm{H_3PO_4}$ (85%), taken to have $\delta=0$.

Download English Version:

https://daneshyari.com/en/article/1339733

Download Persian Version:

https://daneshyari.com/article/1339733

<u>Daneshyari.com</u>