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a b s t r a c t

Frustration of magnetic systems which is caused by competing interactions is the driving force of several
unusual phenomena such as plateaus and jumps of the magnetization curve as well as of unusual energy
spectra with for instance many singlet levels below the first triplet state. The antiferromagnetic cubocta-
hedron can serve as a paradigmatic example of certain frustrated antiferromagnets. In addition it has the
advantage that its complete energy spectrum can be obtained up to individual spin quantum numbers of
s = 3/2 (16777216 states).

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The magnetism of antiferromagnetically coupled and geometri-
cally frustrated spin systems is a fascinating subject due to the
richness of phenomena that are observed [1,2]. Realizations of such
systems exist in one, two, and three dimensions; the most famous
being the two-dimensional kagome lattice [2–7] and the three-
dimensional pyrochlore antiferromagnet [8–16].

It is very interesting and from the point of theoretical modeling
appealing that similar but zero-dimensional spin systems – in the
form of magnetic molecules [17–21] – exist that potentially could
show many of the special features of geometrically frustrated anti-
ferromagnets. Fig. 1 displays the zero-dimensional ‘‘little brothers”
of the kagome antiferromagnet: the cuboctahedron which consists
of squares surrounded by triangles and the icosidodecahedron
which consists of pentagons surrounded by triangles. Such finite
size antiferromagnets offer the possibility to discover and under-
stand properties that are shared by the infinitely extended lattices.
An example is the discovery of localized independent magnons
[6,22], which explain the unusual magnetization jump at the satu-
ration field. Also the plateau at 1/3 of the saturation magnetization
that appears in systems built of corner-sharing triangles could be
more deeply investigated by looking at the cuboctahedron and
the icosidodecahedron [23,24].

In this article we continue investigations along this line. We fo-
cus on two points. First we discuss the physics of the regular cuboc-
tahedron as a function of the single spin quantum number s = 1/2, 1,
3/2. For these cases all energy eigenvalues could be obtained with

the help of irreducible tensor operator (ITO) techniques [25–27]
and by application of point group symmetries. As a second point
we investigate irregular cuboctahedra. This study is motivated by
recent magnetization measurements of the icosidodecahedral mol-
ecules {Mo72Fe30} [18] and {Mo72Cr30} [20] published in Ref. [28]
which could successfully be interpreted by a classical Heisenberg
model with random antiferromagnetic exchange couplings be-
tween the paramagnetic ions.

2. Theoretical model

The physics of many of the mentioned spin systems can be well
understood with the help of the isotropic Heisenberg model,

H
�
¼ �2

X
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Juv~s�
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Here the sum runs over pairs of spins given by spin operators ~s
�

at
sites u and v. A negative value of the exchange interaction Juv corre-
sponds to antiferromagnetic coupling. We refer to a regular body,
e.g. cuboctahedron, if there are only nearest-neighbor couplings of
constant size J. In the case of an irregular coupling the nearest-
neighbor couplings can assume values according to the chosen
distribution.

Since the Hamiltonian commutes with the total spin, we can
find a common eigenbasis {jmi} of H� , S�

2, and S�z and denote the re-
lated eigenvalues by Em, Sm, and Mm, respectively. The eigenvalues of
(1) are evaluated in mutually orthogonal subspaces HðS;MÞ of to-
tal spin S and total magnetic quantum number M using irreducible
tensor operator (ITO) techniques [25–27]. In addition point group
symmetries have been applied for the regular cuboctahedron.
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3. The regular cuboctahedron

The regular cuboctahedron belongs to the class of geometrically
frustrated antiferromagnets built of corner-sharing triangles. Such
systems possess an extended magnetization plateau at 1/3 of the
saturation magnetization Msat caused by dominant up–up–down
contributions [23,24], an unusually high jump of the magnetiza-
tion at the saturation field due to independent magnons [22,6] as
well as low-lying singlets below the first triplet level [29,30,24].
These features are shared for instance by the icosidodecahedron
and by the kagome lattice.

Fig. 2 shows the magnetization curves at T = 0 for the regular
cuboctahedron with s = 1/2, s = 1, and s = 3/2. These curves show
besides the plateau at Msat=3 a jump to saturation of height
DM = 2. Both features are reflected by the differential susceptibility
function which is displayed in Fig. 3. Each step in Fig. 2 corre-
sponds to a peak in Fig. 3. One notices that the peaks are washed
out for higher temperatures, but that the minimum that corre-
sponds to the plateau at Msat=3 persists up to temperatures of
the order of the exchange coupling.

As a function of the intrinsic spin s the differential susceptibility
dM=dB exhibits two properties. With increasing spin quantum
number s the individual peaks oscillate more and more with smal-
ler relative amplitude, but the minimum at 1/3 is actually sharp-
ened. It is known that in the classical limit, i.e. for s ?1, the
differential susceptibility is practically flat below the saturation
field except for the dip at 1/3 [23].

For zero-field Fig. 4 shows the low-lying energy levels. In the
case of s = 1/2 (l.h.s. of Fig. 4) one notices the low-lying singlets
below the first triplet. These states are a cornerstone of geomet-
ric frustration and as well present in the kagome lattice and the
icosidodecahedron with s = 1/2 [29]. It is interesting to note that
with increasing s, i.e. towards a more classical behavior, the
number of these states decreases. For s = 1 (middle of Fig. 4)
the first excited singlet level is already (slightly) above the low-
est triplet level. For s = 3/2 (r.h.s. of Fig. 4) a doubly degenerate
excited singlet level remains below the lowest triplet, the others
have disappeared. This behavior, i.e. no excited singlets below
the lowest triplet for integer spins and a doubly degenerate ex-
cited singlet below the lowest triplet, does not change anymore

for higher spin quantum numbers as can be checked e.g. by
Lanczos methods.

The rather high symmetry of the cuboctahedron leads to many
degenerate energy levels. As examples we label some low-lying en-
ergy levels in Fig. 4 by their multiplicity dS, i.e. by the degeneracy of
the whole multiplet. The full degeneracy including the multiplicity
of the magnetic sublevels dM is then d = dS � dM. Clearly, such high
multiplicities have an important impact on the magnetocaloric
behavior since they increase the entropy for low temperatures
[30,31]. In the following we would like to discuss the impact of
low-lying singlets below the first triplet which in the case of ex-
tended lattices are supposed to condense in infinite number onto
the ground state.

Fig. 5 compares the heat capacity (l.h.s.) and the zero-field sus-
ceptibility (r.h.s.) for the regular cuboctahedron with s = 1/2, s = 1,
and s = 3/2. The heat capacity shows a pronounced double peak
structure for s = 1/2 and s = 1 which dissolves into a broad peak
with increasing spin quantum number. The broad peak also moves
to higher temperatures with increasing s. The reason for the first
sharp peak is twofold. Since there are several gaps between the
low-lying levels the density of states has a very discontinuous
structure which results in the double peak structure. For s = 1/2
the low-lying singlets provide a very low-lying non-magnetic den-
sity of states which is responsible for the fact that the first sharp
peak is at such low temperatures. For s = 1 the first sharp peak re-
sults from both excited singlet as well as lowest triplet levels. For
s = 3/2 a remnant of the first sharp peak is still visible; it is given by
the low-lying singlets, but since they are so few, also influenced by
the lowest triplet levels.

The behavior of the heat capacity is contrasted by the suscepti-
bility on the r.h.s. of 5 which reflects mostly the density of states of
magnetic levels and is only weakly influenced by low-lying sing-
lets. Therefore, the first sharp peak, or any other structure at very
low temperatures, is absent.

4. The irregular cuboctahedron

In this section we investigate how the magnetic properties of
the cuboctahedron change if random variations of the exchange
coupling parameters are introduced. This study is motivated by

Fig. 2. Magnetization as a function of applied field at T = 0 for the regular cuboctahedron with s = 1/2, s = 1, and s = 3/2. The extended plateau at Msat=3 is clearly visible.

Fig. 1. Cuboctahedron, icosidodecahedron, and (part of the) kagome lattice.
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