

Available online at www.sciencedirect.com

Polyhedron 24 (2005) 2269-2273

www.cisevici.com/locate/poly

Molecular spin ladders self-assembly from [Ni(dmit)₂]⁻ building blocks: Syntheses, structures and magnetic properties

Youcun Chen ^a, Guangxiang Liu ^a, You Song ^b, Heng Xu ^a, Xiaoming Ren ^{a,*}, Qingjin Meng ^b

^a Chemistry Department, Anqing Normal College, Lin Hu South Road 128, Anqing 246011, PR China ^b Coordination Chemistry Institute & State Key Laboratory, Nanjing University, Nanjing 210093, PR China

Received 5 October 2004; accepted 31 October 2004 Available online 23 May 2005

Abstract

Two ion-pair compounds, consisting of 1-(4'-R-benzyl)pyridinium ([RBzPy]⁺, R = NO₂ (1) and Br (2)) and [Ni(dmit)₂]⁻ (dmit²⁻ = 2-thioxo-1,3-dithion-4,5-dithiolato), have been synthesized and structurally characterized. The anions of [Ni(dmit)₂]⁻ stack into dimers, which further construct into two-leg ladder through terminal S···S interactions in 1, lateral S···S interactions in 2. The weak H-bonding interactions of C-H···S were observed in 2, while only weak van de Waals interactions between anion and cations in 1. The magnetic susceptibilities measured in 2–300 K indicate AFM exchange interaction domination both two compounds. A peculiar magnetic transition at ~100 K was observed in 1. An AFM ordering below ~11 K was found in 2, and the best fit to magnetic susceptibility above 45 K in this compound, using a dimer model with s = 1/2, give rise to $\Delta l/k_B = 36.1$ K, zJ = -0.91 K, $C = 3.2 \times 10^{-3}$ emu K mol⁻¹ and $\chi_0 = -4.0 \times 10^{-6}$ emu mol⁻¹ with g of 2.0 fixed.

Keywords: Bis(2-thioxo-1,3-dithion-4,5-dithiolato)nickelate compound; Crystal structure; Magnetic property; Spin ladder

1. Introduction

Recently, a great deal of research has been reported on conductivity and magnetic property of different types of bis-dithiolate metal complexes [1].

In our previous research, using benzylpyridinium derivatives ([RBzPy]⁺) as the counter-cation of [M(mnt)₂]⁻ (M = Ni, Pd and Pt), a series of ion-pair compounds with segregated columnar stacks of cations and anions have been prepared [2–6]. The quasi-one-dimensional magnetic nature of these compounds was attributed to intermolecular π -orbital interactions within the anionic columns. Furthermore, for some compounds, spin-Peierls-like transition was observed

E-mail address: huaxue@aqtc.edu.cn (X. Ren).

[1a,4,5a]. More presently, we are devoted to our research interesting on the molecular magnets self-assembly from [Ni(dmit)₂]⁻ ion due to its molecular and electronic structure resemble [Ni(mnt)₂]⁻ ion, which is expected to obtain new series of molecular magnets with peculiar magnetic phase transition via incorporating the benzylpyridinium derivatives into [Ni(dmit)₂]⁻ spin system. Herein, we report syntheses, crystal structures, and magnetic properties of two compounds consisting of [Ni(dmit)₂]⁻ and benzylpyridinium derivatives.

2. Experiments

2.1. Physical measurements

Elemental analyses were performed with a Perkin– Elmer 240 analytical instrument. Magnetic susceptibility

^{*} Corresponding author. Tel.: +86 556 550 0690; fax: +86 556 550 0148.

data on polycrystalline sample were collected in 2–300 K using a MagLab system 2000 magnetometer.

2.2. Syntheses of $[NO_2BzPy][Ni(dmit)_2]$ (1) and $[BrBzPy][Ni(dmit)_2]$ (2)

1 and **2** were prepared according to the procedure described in [7], elemental *Anal.* Calc. for $C_{18}H_{11}N_2$ -NiO₂S₁₀: C, 32.4; H, 1.66; N, 4.20. Found: C, 31.9; H, 1.70; N, 4.18% for **1**, and *Anal.* Calc. for $C_{18}H_{11}BrN-NiS_{10}$: C, 30.9; H, 1.58; N, 2.00. Found: C, 30.7; H, 1.68; N, 1.96% for **2**.

The single crystals suitable for X-ray analysis were obtained by dispersing Et_2O into MeCN solution of 1 for one week.

2.3. X-ray crystallography

Diffraction data of **1** was collected at 293 K on a CAD4 with Mo K α radiation. The structure of **1** was solved by direct method and refined on F^2 by full-matrix least-squares method using the SHELXTL program package [8]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in their calculated positions and refined following the riding model. Crystal data for **1**: $C_{18}H_{11}N_2NiO_2S_{10}$, M = 666.60, triclinic, space group $P\bar{1}$, a = 9.3500(19) Å, b = 11.780(2) Å, c = 11.860(2) Å, $\alpha = 80.16(3)^\circ$, $\beta = 89.52(3)^\circ$, $\gamma = 76.04(3)^\circ$, V = 1248.3(4) Å³, Z = 2, $D_{calc} = 1.773$ g cm⁻³, $\mu = 1.635$ mm⁻¹, final R, $R_w = 0.0450$, 0.1034. 3601 observed

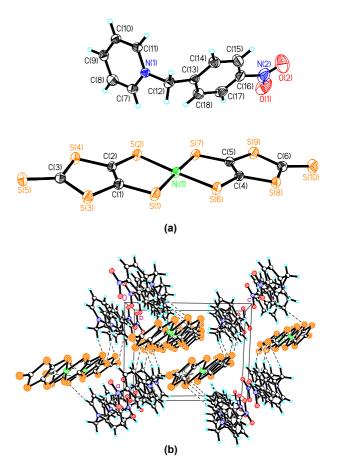


Fig. 1. (a) ORTEP drawing of 1 with 30% possibility ellipsoids and (b) the packing structure projected along c-axis.

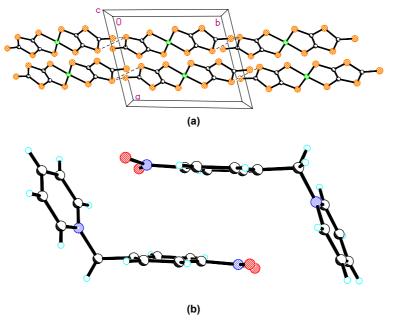


Fig. 2. (a) Spin ladder (the direction of ladder leg is parallel to b-axis) (b) dimer of cation in 1.

Download English Version:

https://daneshyari.com/en/article/1341078

Download Persian Version:

https://daneshyari.com/article/1341078

<u>Daneshyari.com</u>