
Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

An adaptive sigma-point Kalman filter with state equality constraints for
online state-of-charge estimation of a Li(NiMnCo)O2/Carbon battery using a
reduced-order electrochemical model
Yalan Bi, Song-Yul Choe⁎

Department of Mechanical Engineering, Auburn University, Alabama 36849, USA

H I G H L I G H T S

• A new SOC estimation algorithm based on a reduced-order model is proposed.

• An adaptive algorithm with state equality constraints is incorporated.

• A comparative study of nonlinear filters show the advantages of the proposed method.

• The proposed method is tested in real-time using a battery-in-the-loop test station.

• Significant improvements are achieved in reducing the voltage and SOC error.
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A B S T R A C T

A new SOC estimation method is proposed based on a reduced-order electrochemical model using an adaptive
square-root sigma-point Kalman filter (ASR-SPKF) with equality state constraints. The constraints derived from
the principle of charge conservation are introduced to improve the accuracy of both anode and cathode SOC
estimations. Furthermore, the cathode SOC is estimated to represent the cell SOC for its fast convergence speed,
which is due to the high magnitude of the cathode equilibrium potential. Approaches used to adaptively up-
dating the covariance parameters of the filter based on the covariance matching method are also incorporated.
As a result, the covariance matrix of process noise is adjusted automatically. Comparative studies of three
nonlinear filters concerning estimation accuracy, error bounds, recovery time from an initial offset, and com-
putational time revealed that the ASR-SPKF has the most outstanding performance. That is, 30% more accurate
and 88% shorter the convergence time than the AEKF, and, computationally, 23% and 19% faster than the AEKF
and ASPKF, respectively. Then, the proposed method was tested at different temperatures using a large-format
lithium-ion battery with a nominal capacity of 42 Ah where the voltage and SOC error remained less than 22 mV
and 2%, respectively. Finally, the proposed method was implemented in a battery-in-the-loop test station using a
fast charging and a driving cycle profile, and the estimated voltage and SOC were compared with the experi-
mental results.

1. Introduction

State-of-charge (SOC) represents the remaining capacity of a battery
that can be released. It plays a crucial role in ensuring a safe and reli-
able battery operation by preventing under- or over-charge, and pre-
dicting available power and energy because of its close relationship to
the lithium ion concentration, which is one of the core physical states of
a lithium-ion battery. However, SOC cannot be directly measured.
Many attempts have been made to find the best approach that enables

an accurate estimation of SOC, and one of the most widely used
methods is based on an equivalent circuit model (ECM) that uses
electrical components–resistors, capacitors, and voltage sources–to
mimic battery dynamics [1]. Then, parameters of the ECMs, as well as
the SOC, are simultaneously updated by an estimator. However, the
parameters of the ECMs do not provide physical information of the
battery, such as ion concentrations, potentials, overpotentials, and
current density, to name a few. The accurate estimation of such vari-
ables provides various benefits, such as the detection of ion
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concentration depletion/saturation [2], degradation prediction that
considers side reactions and lithium deposition reactions [3,4], and the
optimization of ultra-fast charging protocols that considers concentra-
tion and potential limitations [5].

In fact, electrochemical models account for the transport of lithium
ions, electrochemical kinetics, and material properties [6], which are
ideal for the above-mentioned applications since they offer the ad-
vantages of providing information regarding internal physical vari-
ables, in addition to accurately predicting terminal voltage. The gov-
erning equations of the models are a set of coupled nonlinear partial
differential equations (PDEs), and solving these equations demands
considerable computational power. In order to use the electrochemical
model in a real-time application while retaining its physical insights,
the model order should be reduced, which results in a reduced-order
model (ROM). The order reduction is performed by employing Padé
approximation and residual grouping to simplify the equations of ion
concentrations in both electrodes and electrolytes in conjunction with
an analytical solution of cell potentials [7].

The estimator also plays a key role in accurately predicting the SOC.
Despite the fact that the accuracy of a ROM can be improved by opti-
mizing its parameters, there are still errors caused by model inaccuracy,
uncertainties in initial conditions of the states in the model, and process
and measurement noise. Therefore, to further reduce these errors, the
nonlinear Kalman-based estimators are the potential candidates for the
following reasons:

• The feedback loop can minimize the differences between predicted
and measured terminal voltages so that uncertainties in the model
and initial conditions are compensated.

• Recursive methods do not require the storage of all the past data but
only the results of the last recursion. They are particularly suitable
for estimating SOC online since the algorithm is usually embedded
in a microprocessor with limited memory.

• Statistical methods are used to suppress unknown inputs (i.e., pro-
cess noise) and uncertainties in the output (i.e., measurement noise).
In particular, the process and measurement noises are assumed to be
Gaussian distributed random variables. Although this assumption
rarely holds true in practice, results reported in the research lit-
erature [1] and our results demonstrate that the method works well.

• Simple implementation with only several lines of code is even more
suitable for a real-time application, such as SOC estimation, which is
implemented in an onboard battery management system (BMS).

There are different types of nonlinear Kalman filters (KFs). One of
the most widely used KFs is called the extended Kalman filter (EKF),
which is based on the probability theory and a least-square minimiza-
tion framework. The nonlinearity of a system is linearized by employing
a first-order Taylor series expansion at each operating point to calculate
the mean and covariance of the states. However, for a highly nonlinear
system, such as an electrochemical model, the actual mean and cov-
ariance of the states may differ from the linearized results, which causes
errors, and even divergence, in estimations. To overcome the draw-
backs of the EKF, another nonlinear KF, a sigma-point Kalman filter
(SPKF), takes a set of sample points and propagates them through the
nonlinear system, from which the mean and covariance are calculated.
The set of sample points, called the sigma points, is formed by calcu-
lating the matrix square-root of the state covariance. The SPKF per-
forms better on a highly nonlinear system, such as the ROM, but the
calculation of matrix square-root becomes one of the most costly op-
erations. To further improve the computational efficiency of the SPKF, a
square-root sigma-point Kalman filter (SR-SPKF) was developed [8]
that propagates the square-root of covariance directly.

Some recent studies have focused specifically on utilizing an EKF
with a ROM. For example, Santhanagopalan et al. applied an EKF to a
ROM that simplifies a porous electrode into a single spherical particle
and ignores the gradients of concentration and potential in the

electrolyte [9], where the average concentration in the solid is used as
the state for calculating the cell SOC. However, only the results for the
anode were presented. A “three-sigma” error bound is used that in-
dicates where the true state should remain 99% of the time. However,
the results showed that the actual error was outside the error bounds
30% of the time, which implies that the error bounds provided by the
EKF were not reliable. Domenico et al. applied an EKF to a ROM by
averaging the input current as the cell kinetic current density [10]. The
cell SOC and surface concentrations were estimated and compared with
a full-order model. However, neither of these studies addressed the
problem of initial SOC offset, and the SOC errors were primarily de-
termined by the accuracy of the time update using the model. There-
fore, it is difficult to evaluate the performance of the model and esti-
mator separately. Similarly, Stetzel et al. estimated the SOC and
internal variables, including ion concentrations, cell potentials, and
current density, using an EKF in conjunction with a one-dimensional
ROM and provided the bounds for errors [11]. Despite their detailed
analysis of each state, the used simulation profile used was only a
driving condition of approximately 60% SOC.

Alternatively, despite the fact that the SPKF was reported more
suitable for nonlinear systems [12,13], it has not been fully explored
with the ROMs. For example, the authors in Ref. [9] implemented the
SPKF with few details. On the other hand, recent studies have more
focused on using the SPKF in conjunction with the ECMs. Particularly,
the authors in Ref. [14] proposed a co-estimator utilizes the recursive
least square for parameters identification, the EKF for online parameter
updating, and the SPKF for SOC estimation. It is reported that the RMSE
of the latter was less than 2.5% with high robustness. Moreover, Yang
et al. conducted a comparative study of the EKF, SPKF, and particle
filter in conjunction with an empirical model where the RMSE of SOC
estimation was less than 3% with computational efficiency that is
comparable to the EKF [15].

In summary, most of the aforementioned studies employed the EKFs
to the ROMs, while the SPKF was primarily applied to the ECM and the
empirical models. We realized that there is a lack of a thorough analysis
of the performance of different nonlinear KFs, other than the EKF, in
conjunction with an electrochemical model. Therefore, the goal of this
work is to answer questions including which nonlinear Kalman fil-
ter–among EKF, SPKF, and SR-SPKF–has the best performance when
employed to the ROM; as well as how to modify the filters to achieve
higher robustness. Specifically, we chose to investigate three enhanced
nonlinear KFs that include a modified EKF, SPKF, and SR-SPKF in
conjunction with a developed ROM [7,16] that entails a similar com-
putational cost to that of an ECM. We investigated how state equality
constraints affect SOC estimation results and how process and mea-
surement noise can be automatically compensated for without manu-
ally tuning of filter parameters. Performance of the nonlinear KFs was
compared with respect to the accuracy, computational time, and ability
to reject the initial errors, which demonstrates that an adaptive sigma-
point Kalman filter outperforms others that are validated in real-time
using a battery-in-the-loop (BIL) test station. This paper provides three
main contributions: (1) the proposed method incorporates additional
equality constraints systematically without revisiting the structure of
the original model, which addresses the problem of weak observability
from the terminal voltage [10]; (2) estimation of SOC from the cathode
results in a faster convergence speed when an initial offset of SOC is
present; and (3) comparative studies as well as systematic analysis on
several modified nonlinear Kalman filters are conducted to assess the
best SOC estimator based on the ROM.

The remainder of the paper is organized as follows. In Section 2, the
ROM is described and validated. Section 3 formulates SOC estimation
state and output equations, describes the EKF, SPKF and SR-SPKF, as well
as introduces modifications including state equality constrains and cov-
ariance adaption algorithms. Section 4 presents a comparison of SOC
estimation results using the modified nonlinear filters, and the BIL results
using the proposed method. Finally, Section 5 concludes this paper.
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