Contents lists available at ScienceDirect

Applied Energy

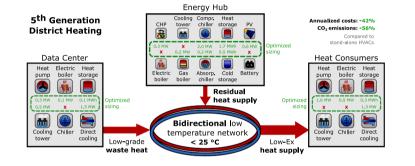
journal homepage: www.elsevier.com/locate/apenergy

5th Generation District Heating: A novel design approach based on mathematical optimization

AppliedEnergy

Marco Wirtz*, Lukas Kivilip, Peter Remmen, Dirk Müller

RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor Climate, Mathieustr. 10, Aachen, Germany


HIGHLIGHTS

G R A P H I C A L A B S T R A C T

- Linear Program for designing bidirectional low temperature networks.
- Holistic sizing approach for all building energy systems in a district.
- Performance evaluation with economic, thermodynamic and ecologic indicators.
- Comparison with stand-alone HVAC systems.
- Bidirectional low temperature network result in substantial energy and cost savings.

ARTICLE INFO

Keywords: Bidirectional low temperature network District heating District cooling Waste heat Prosumer Linear Programming

ABSTRACT

This paper presents a novel design methodology based on Linear Programming for designing and evaluating distributed energy systems with bidirectional low temperature networks (BLTNs). The mathematical model determines the optimal selection and sizing of all energy conversion units in buildings and energy hubs connected to the BLTN while minimizing total annualized costs. The optimization superstructure of building energy systems comprises heat pumps, compression chillers, heat exchangers for direct cooling, cooling towers and thermal energy storages. The design approach is applied to a real-world use case in Germany and the BLTN performance is compared to a reference case with individual HVAC systems. The BLTN concept shows a cost reduction of 42% and causes 56% less CO₂ emissions compared to individual HVAC systems.

1. Introduction

With 50% of final energy consumption, heating and cooling is the largest energy sector in Europe [1]. While the heating demand is expected to decrease, the cooling demand in buildings will increase substantially in the upcoming decades [2]. The task of an emission-free supply of heating and cooling energy is challenging, especially in urban areas: Space is a very limited resource and noise emissions should be kept to a minimum. An energy supply by individual supply units in buildings is therefore not satisfying. Instead, district heating and

cooling (DHC) gains more importance. DHC networks enable an efficient energy supply while reducing primary energy demands as well as local emissions [3]. In order to increase the efficiency of thermal networks, a tendency towards lower operating temperatures is observed [4]. Lower network temperatures reduce thermal losses and enable the integration of low-grade waste heat and renewable heat sources ([5,6]).

The latest innovation in district heating are 5th Generation District Heating and Cooling networks. In the following, a brief literature review on this technology is provided and relevant gaps for this work are identified.

* Corresponding author.

E-mail address: marco.wirtz@eonerc.rwth-aachen.de (M. Wirtz).

https://doi.org/10.1016/j.apenergy.2019.114158

Received 4 July 2019; Received in revised form 18 October 2019; Accepted 12 November 2019 0306-2619/ © 2019 Elsevier Ltd. All rights reserved.

Nomenclature		η	Efficiency	
		ρ	Density	
Abbreviations		$\sigma(y)$	Design day assignment function	
		$\phi_{ m loss}$	Loss factor	
AC	Absorption Chiller	τ	Minimum charging/discharging time	
BAT	Battery	$a_{\rm inv}$	Capital recovery factor	
BES	Building Energy System	с	Specific costs	
BLTN	Bidirectional Low Temperature Network	$c_{ m p}$	Specific heat capacity	
BOI	Gas Boiler	e	Specific CO ₂ emissions	
CC	Compression Chiller	COP	Coefficient of performance	
CHP	Combined Heat and Power	f	Figure of merit	
CT	Cooling Tower	$f_{\rm om}$	Cost share for operation & maintenance	
CTES	Cold Thermal Energy Storage	i	Specific investments	
DHC	District Heating and Cooling	kA	Thermal transmittance	
EB	Electric Boiler	Ν	Number of decision variables	
EH	Energy Hub	р	Specific price	
FOM	Figure of Merit	PEF	Primary energy factor	
DRC	Direct Cooler	r	Specific revenue	
HP	Heat Pump	$R_{\rm gas}$	Energy grade function of natural gas	
HVAC	Heating, Ventilation and Air Conditioning	s gas	Proportion of storage capacity	
LP	Linear Program	Т	Temperature	
MILP	Mixed-Integer Linear Program	V	Storage volume	
PV	Photovoltaics	Wd	Design day weight	
SOC	State of Charge	u	0,0	
STC	Standard Test Conditions	Sub- an	Sub- and Superscripts	
ГАС	Total Annualized Costs			
TES	Thermal Energy Storage	el	electric	
		ex	exergy	
Indices o	and Sets	с	cooling	
		cap	capacity	
$b \in B$	Buildings	ch	charge	
$d \in D$	Design days	dch	discharge	
t∈T	Time steps	dem	demand	
$y \in Y$	Days of the year	h	heating	
,		init	initial	
Variable	3	max	maximum	
		min	minimum	
4	Roof area	netw	network	
сар	Device capacity	nom	nominal	
C	Annualized costs	sol	solar	
E	Exergy	sup	supply	
G	Gas energy	ref	reference	
[Investment	res	residual	
p	Electric power	ret	return	
Q	Thermal energy	th	thermal	
R	Annualized revenue	tot	total	
S	State of charge	w	water	
W	Electric energy	vv	mater	
Paramet	ters			
β	Heat ratio			

1.1. 5th Generation District Heating and Cooling

The latest stage in the development of DHC systems are 5th Generation District Heating and Cooling (5GDHC) networks ([7,8]). In literature, these networks are also referred to as Bidirectional Low Temperature Networks ([9–12]), Cold District Heating Networks (in German Kalte Nahwärme) ([13,14]) or Anergy Networks ([15–17]) (in German Anergienetze). In this study, they are referred to as Bidirectional Low Temperature Networks (BLTN). The general concept of BLTNs is depicted in Fig. 1. Heating and cooling consumers are connected to a thermal network which consists of a warm and a cold pipe. The

temperature of the fluid in the warm pipe is around 5–10 K higher than the temperature in the cold pipe. The temperatures in both pipes are close to the surrounding (5–30 °C), which keeps heat losses to a minimum. In order to raise the temperature level for space heating or domestic hot water, buildings are equipped with heat pumps. Heat pumps use water from the warm pipe as heat source. Cooled water from the evaporator is then discharged into the cold pipe. Likewise, chillers use the network as heat sink. They take water from the cold pipe and discharge the heated fluid into the warm pipe. Thus, the flow direction of the water in the network can change over time in each segment of the network and only depends on the operation of the decentralized pumps Download English Version:

https://daneshyari.com/en/article/13418613

Download Persian Version:

https://daneshyari.com/article/13418613

Daneshyari.com