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H I G H L I G H T S

• A framework for state-of-charge and remaining discharge time prediction is proposed.

• The unscented particle filter is employed to improve the observation accuracy.

• The recursive method is presented to predict the probable future current.

A R T I C L E I N F O

Keywords:
State observation
Battery modeling
System identification
Bayes estimation
Load behavior prediction

A B S T R A C T

As a typical complex system, the lithium-ion battery system is characterized by strong coupling and nonlinearity,
which brings great challenges to its modeling, state estimation, and control. The modeling and state estimation
especially the state-of-charge and remaining discharge time are key issues for the battery management system.
This paper details a framework for observation of the battery state-of-charge and remaining discharge time by
using the unscented particle filter. First, an equivalent circuit model considering hysteresis is presented and
verified at different temperatures. Then the framework for observation of the battery state-of-charge and re-
maining discharge time is proposed using the unscented particle filter in order to improve the observation
accuracy. The recursive method is employed to predict the probable future current considering the historical
data. In addition, the prediction results of the probable future current with different forgetting factors are
compared and analyzed in order to select the optimal parameter for the remaining discharge time prediction.
Finally, experiments under different dynamic driving cycles at different temperatures are carried out to verify
the proposed method. The performance of the unscented particle filter and the extended Kalman filter are
compared and analyzed. The experimental results indicate that the proposed unscented particle filter method has
high accuracy and fast convergence under dynamic driving cycles.

1. Introduction

1.1. Motivation and challenges

In the past decades, the rapid development of battery electric ve-
hicles has driven the progress of battery and energy storage technology
[1]. Due to the large-scale and unitized use of single cells, the power
battery system has brought new problems to safety and has become a
technical bottleneck for the promotion and application of the electric
vehicles. As a typical complex system, the lithium-ion battery system is
characterized by strong coupling and nonlinearity, which brings great
challenges to its control and management [2]. Therefore the battery
management system is significant to ensure the safe and efficient op-
eration of the battery system [3]. The power battery is a complex

nonlinear time-varying system that contains plenty of time-varying
states such as the state-of-charge (SOC) [4], state-of-energy (SOE) [5],
state-of-power (SOP) [6], and slowly changing parameters of the cell
model. The accurate observation of the battery state especially the SOC
is the key issue of the battery management system which is also the
basis of the balancing strategies [7] and premise to both energy and
power calculations. For the hybrid energy storage systems in hybrid
electric vehicle or fuel cell vehicle applications, those parameters are
usually key constraints in energy management strategies [8].

The battery SOC is defined as the ratio between the remaining ca-
pacity and the total available capacity. Distinguish from the fuel gauge,
the SOC is not a directly measurable value. Because there is no sensor
available to measure the SOC, the SOC needs to be estimated by using
the measured voltage, current, and temperature. Although the battery
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SOC can indicate the residual capacity of the battery, it cannot directly
tell the driver how long the battery will last, because the dynamics of
the operating conditions are not included in the definition of SOC.
Therefore a more intuitive indicator is required to directly reflect the
time of endurance of the vehicle. For the advanced prediction of the
endurance time of electric vehicles, a framework for observation of
both SOC and remaining discharge time (RDT) is presented in this
paper.

1.2. Literature review

There are numerous approaches for the battery SOC estimation and
the most commonly used SOC observation methods can be divided into
four types: voltage-based table lookup methods, current-based coulomb
counting methods, model-based observers and data-driven approaches.
As the open-circuit voltage (OCV) is not equal to the terminal voltage,
approximating SOC via table lookup method using the terminal voltage
is truly accurate only when the battery is resting [9]. This is because the
hysteresis, the diffusion and polarization voltages, and the ohmic losses
are not considered in this method. Therefore this method is only sui-
table for the specific resting condition in laboratory testing. For en-
gineering realization, a conventional approach is the current-based
coulomb counting method. The advantage of this open-loop approach is
convenient and easy to implement [10]. However, this approach has
three main drawbacks. First, the initial value determines the accuracy
of the estimation. Second, the estimation accuracy is easily affected by
the sensor noise, thus the reliability and accuracy are highly requested
for sensors. Third, parameters and capacity degradation due to battery
aging are ignored.

To overcome the above drawbacks, the close-loop model-based
observers are presented for battery state estimation. One of the most
representative studies is the extended Kalman filter (EKF) based SOC

estimation presented by Gregory Plett in 2004 [11], which details the
mathematical background, system modeling, model identification and
solution for the state estimation of Li-ion batteries. To obtain better
convergent and robust results, He et al. [12] and Sun et al. [13] de-
veloped the frameworks for SOC estimation by using adaptive EKF and
unscented Kalman filter (UKF), respectively. Hu et al. [14] proposed an
adaptive Luenberger observer for the SOC estimation of lithium-ion
batteries. The observer gain can be adaptively adjusted using a sto-
chastic gradient approach. The results show that the proposed method
can accurately estimate SOC without a heavy computational load.
Wang et al. [15] and Tulsyan et al. [16] employed the particle filter
(PF) for SOC estimation. Unlike the EKF and UKF methods, the PF
method uses a statistical approach which can yield better performance
and works well for nonlinear system. Ye et al. [17] proposed an im-
proved adaptive PF for SOC estimation which can eliminate the esti-
mation error due to battery degradation and initial SOC errors. Wei
et al. [18] presented a recursive total least squares-based observer to
enhance the online model identification and SOC estimation. Xiong
et al. [19] proposed the H infinity filter for OCV and SOC estimation
which can result in accurate SOC estimation with a maximum error of
1%. Wang et al. [20] and Tang et al. [21] explored and proposed the
multi-model switching estimation algorithms which can online select
the most suitable model for SOC estimation. Lin et al. [22] studied the
electrochemical mechanism models including the average-electrode
model and the single-particle model. The EKF method has been em-
ployed for SOC estimation with the electrochemical mechanism models.
Sturm et al. [23] proposed a battery state estimation method using a
physicochemical model. The state-estimation results showed that the
proposed method has good robustness against changing boundary
conditions and pulsed current signals. Mu et al. [24] presented a SOC
estimation framework for the lithium-ion batteries by using the frac-
tional-order impedance model, and the estimation error of the

Nomenclature

Acronyms & abbreviations

SOC state-of-charge
SOE state-of-energy
SOP state-of-power
RDT remaining discharge time
OCV open-circuit voltage
EKF extended Kalman filter
UKF unscented Kalman filter
PF particle filter
NN neural network
SVM support vector machine
DWT discrete wavelet transform
UPF unscented particle filter
MRDT minimum remaining discharge time
MRCT minimum remaining charge time
ECM equivalent circuit model
UDDS urban dynamometer driving schedule
FUDS federal urban driving schedule
RMSE root-mean-square error
RLS recursive least-squares
TCP/IP transmission control protocol / Internet protocol

Notation

z battery SOC
vrc overall voltage of the resistor-capacitor pairs
Δt sampling time interval
I current

vh battery hysteresis voltage
η Coulombic efficiency
γ positive constant
Q battery capacity
OCVchg OCV for charging
OCVdchg OCV for discharging
vd,j voltage of the jth resistor-capacitor pair
θ parameter vector
φ data input vector
P error covariance matrix
κ scale factor for RLS
K gain matrix
R0 Ohmic resistance
Rd,j diffusion resistor of the jth resistor-capacitor pair
Cd,j diffusion capacitor of the jth resistor-capacitor pair
∼i future current considering historical driving profile
w process noise
δ measurement noise
Qs process noise covariance
R measurement noise covariance
X(i) state variable of the ith particle
Y(i) measurement of the ith particle
W weight of the particle
L dimension of the augmented state
σ scaling parameter of UPF
q(i) likelihood associated with the ith particle
q̄(i) the normalized likelihood associated with the ith particle
λ forgetting factor
∼i dchg maximum probable future discharge current
∼i chg maximum probable future charge current
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