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H I G H L I G H T S

• A degradation-aware market participation model for stationary storage is proposed.• A non-linear degradation model is built from experimental data for Li-ion batteries.

• The non-linear degradation model is compatible with a MILP formulation.• A decomposition technique for solving efficiently long-horizon problems is proposed.• The proposed model is benchmarked against commonly used degradation models.
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A B S T R A C T

Given their technological and market maturity, lithium-ion batteries are increasingly being considered and used
in grid applications to provide a host of services such as frequency regulation, peak shaving, etc. Charging and
discharging these batteries causes degradation in their performance. Lack of data on degradation processes
combined with requirement of fast computation have led to over-simplified models of battery degradation. In
this work, the recent experimental evidence that demonstrates that degradation in lithium-ion batteries is non-
linearly dependent on the operating conditions is incorporated. Experimental aging data of a commercial battery
have been used to develop a scheduling model applicable to the time constraints of a market model. A de-
composition technique that enables the developed model to give near-optimal results for longer time horizons is
also proposed.

1. Introduction

Lithium-ion battery technology has increased in popularity in recent
years driven by its demand in electric vehicles [1,2]. The combination
of performance, flexibility and decreasing costs has also made it at-
tractive for integration in power systems. Numerous studies shed light
upon scheduling strategies for battery-based storage in providing grid
services. However, lithium-ion batteries have a limited life [3–5]. With
time and use degradation processes occur, leading to a loss in capacity
(capacity fade) and a loss in power capability (power fade). Thus, ac-
curate determination of degradation is imperative in such models, not
only in order to be realistic in determining the business case, but also to
develop intelligent strategies for charge–discharge scheduling of these
batteries.

1.1. Literature review

Several market studies on batteries focus on the economic viability
of the storage options from a long-term perspective, while others focus
on optimizing their short-term operational strategy. The modus oper-
andi of such studies is to develop a model that jointly simulates the
market and battery behaviour. Modelling of the market mechanisms has
been comprehensive, with studies considering a single [6,7], multiple
[8,9] or a combination of markets [10–12], assuming perfect price in-
formation [8,9,13,14] or uncertainty in prices [12,15].

Battery models in power system and market studies often com-
pletely ignore degradation [13,15,16]. In some works, degradation is
calculated post-optimization. As a result, the operation strategy is short-
sighted and does not consider the battery as a time-limited and costly
resource [17–20].
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Degradation-aware battery scheduling studies use either a con-
straint-based approach [11,21,12] or an objective-based approach
[9,22,23]. In [10], the constraint-based approach has even been com-
bined with the objective-based approach. In the constraint-based ap-
proach, to extend the life of the battery, one or more of the following
variables are constrained: power, number of cycles per day, depth of
discharge (DOD), maximum and minimum state of charge (SOC). Such
approaches that do not model the degradation behaviour at all return
non-optimal results.

In the objective-based approach, the cost of battery degradation is
included as an economic cost in the objective function. Traditionally
two main methods to model degradation have been used: the Ah
throughput method [23,24] and the method of cycle life vs. DOD power
function [9,11,22]. In the first method, it is assumed that a certain
amount of energy can be cycled through a battery before its end of life,
irrespective of the depth of discharge. In the second method it is as-
sumed that the number of cycles that a battery can perform is inversely
proportional to the amplitude of DOD given by a simple power func-
tion. The origins of the two most employed methods for quantifying
degradation, cycle life vs. DOD and Ah throughput, can be traced to
modelling the lead-acid battery degradation behaviour [25–27].

From the point of view of objective function, most approaches are
single objective, where degradation is assigned an economic cost. This
cost is often based on the battery replacement cost [9,18,28,29],
sometimes on the economic utilization costs (investment & operating)
[30] and other times on the marginal cost of operation [31]. The above
discussion has been summarized in Fig. 1.

1.2. Gaps in modelling degradation phenomena in lithium-ion batteries

While the modelling of the market part of the scheduling models has
been comprehensive, modelling of battery degradation phenomena is

Nomenclature

Parameters

l parameter representing the horizontal change between
two consecutive points defining the piecewise linear
function C1

m parameter representing the vertical change between two
consecutive points defining the piecewise linear function

C1

n total number of segments of a piecewise linear function
s parameter representing SOC values of points defining the

piecewise linear function C1

I C1 1C current (A)
Pt

ch max, maximum power input to the battery in the trading in-
terval t (W)

Pt
dis max, maximum power output from the battery in the trading

interval t (W)
Q rated capacity of the battery (Ah)
Vnom nominal battery voltage (V)

s( )C1 parameter representing y coordinates of points defining
the piecewise linear function C1

efficiency of the storage system
t market clearing price for the trading interval t (€/ Wh)

weighting factor
T duration of a trading interval (h)

Decision Variables

dt degradation during the trading interval t (Ah)
dt

C1 degradation at 1C current rate for the change in battery
state during the trading interval t (Ah)

it current rate during the trading interval t (h−1)
ut binary variable. 1 when storage system is charging in

trading interval . else 0
vt i, modelling variable introduced to implement incremental

cost formulation
zt i, binary variable introduced to implement incremental cost

formulation
D total degradation in the market period (Ah)
Pt

ch b, power input to the battery in the trading interval t (W)
Pt

ch m, power input from the market in the trading interval t (W)
Pt

dis b, power output from the battery in the trading interval t (W)
Pt

dis m, power output to the market in the trading interval t (W)
R revenue (€)
SOC state of charge, measure of the remaining capacity of the

battery, defined as the ratio of the current capacity to the
total capacity, expressed in percent

t
C1 cumulative degradation function value computed for 1C at

the end of trading interval t
composite objective function value
degradation scaling factor to account for current depen-
dence

Indices

i index of points defining the piecewise linear function
t trading interval index

Terms

DOD depth of discharge or cycle depth, defined as one half of
the fraction of full cell capacity used during one cycle,
expressed in percent

EFC equivalent full cycle, a measure of charge throughput
equal to two times the capacity of a new battery

SOCt state of charge of the storage system at the end of trading
interval t

Fig. 1. Summary of battery models used for market studies (the contribution of
this work highlighted using a lighter shade).
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