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A B S T R A C T

The subject of the paper are two-layer beams with various mechanical properties, thicknesses and widths of the layers. The original nonlinear hypothesis-theory of
planar cross section is developed. Based on the principle of stationary potential energy three differential equations of equilibrium are obtained. The system of the
equations is analytically solved and the deflections and normal and shear stresses of example beams are calculated. The analytical calculation results are compared
with numerical solutions obtained with FEM (SolidWorks). These results are presented in Tables and Figures.

1. Introduction

Two-layer beams and plates are used as the parts of modern con-
structions. Gere and Timoshenko [1] presented a basic linear analytical
model of a two-layer beam and described the distribution of normal
stresses for example beams. Foraboschi [2] presented a nonlinear
analytical model allowing to analyze the composite beams subject to
transverse bending. The model takes into account the relative slip be-
tween the layers and predicts the stresses as well the load causing de-
bonding of two-layer beams. The effect of various geometrical and
material parameters was estimated through many exemplary variants of
the beams. Ecsedi and Baksa [3] analyzed the static behaviour of two-
layer beams with interlayer slip. The approach consisted in separate
consideration of each layer using the Euler–Bernoulli hypothesis. The
authors formulated a linear constitutive equation governing the re-
lationship between the slip and the interlaminar shear force. A second
order differential equation was derived the solution of which enabled to
determine the slips and deflections. Le Grognec et al. [4] investigated
buckling behavior of two-layer shear-deformable beams. The Ti-
moshenko kinematic hypotheses were assumed for both layers, al-
lowing to consider the relationship between the interface shear dis-
tribution and the corresponding slip. The proposed formulae were
positively validated using the finite element calculations. Campi and
Monetto [5] proposed a new approach to the analysis of two-layer
beams with interlayer slip. The layers were considered as linearly
elastic Timoshenko beams interconnected each with other. The problem
was analytically solved for various boundary conditions and load cases,
with a view to determine the interfacial forces causing debonding of the
layers. Lenci and Rega [6] dealt with free vibration of a two-layer beam.

The authors used the asymptotic development method in order to de-
fine the conditions allowing to ignore the axial and rotational inertia as
well as shear deformations. Two variants of the model were assumed,
permitting to compute the limit natural frequencies and their correc-
tions. This enabled to determine the sensitivity of the beam to the
adopted parameters. Yang et al. [7] presented a solution for a bilayer
functionally graded cantilever beam subjected to concentrated load at
its free end. The beam was modeled as a nonhomogeneous plane stress
problem, with the elastic modulus of each layer varying in the thickness
direction according to an arbitrary function. The method proposed by
the authors could be easily upgraded for purposes of analysis of the
functionally graded sandwich beams. He and Yang [8] analyzed two-
layer composite beam subjected to seismic and moving loads, taking
into account the beam higher order deformations. The authors devel-
oped a proper finite element using the principle of virtual work. The
effects of the velocity of moving load, damping ratio, slenderness ratio
and interfacial stiffness on the beam behaviour were studied. Numerical
results obtained this way evidenced high accuracy of the dynamic
analyses, better than in case of the classical and Reddy's models. Song
et al. [9] proposed a model of two-layer smart composite Timoshenko
beams, depicting the host composite beam and the layer composed of a
piezoelectric transducer. The model was then evaluated by comparison
with the results obtained from standard finite element analysis and,
afterwards, it was applied with a view to investigate the waves guided
in laminated composite beams. Monetto and Campi [10] improved a
mathematical model, based on classical beam theories earlier proposed
by the authors. The analytical solution based on the model enabled to
achieve a generic configuration of the composite beam, characterized
by various regimes coexisting along the interface. The approach

https://doi.org/10.1016/j.compstruct.2019.111777
Received 20 September 2019; Received in revised form 14 November 2019; Accepted 3 December 2019

⁎ Corresponding author.
E-mail address: ewa.magnucka-blandzi@put.poznan.pl (E. Magnucka-Blandzi).

Composite Structures 235 (2020) 111777

Available online 09 December 2019
0263-8223/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/02638223
https://www.elsevier.com/locate/compstruct
https://doi.org/10.1016/j.compstruct.2019.111777
https://doi.org/10.1016/j.compstruct.2019.111777
mailto:ewa.magnucka-blandzi@put.poznan.pl
https://doi.org/10.1016/j.compstruct.2019.111777
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2019.111777&domain=pdf


allowed to simulate the course of the interface debonding of the layers,
positively verified by the numerical analyses. Uddin et al. [11] for-
mulated a nonlinear finite element model designed for accurate pre-
dicting of the behaviour of two-layered composite beams, with con-
sideration of partial shear interaction. The one-dimensional finite
element model developed for this purpose enabled to illustrate the
geometric nonlinear effects of the beam. Effectiveness of the approach
was assessed by comparison with previously published results and nu-
merical results based on two-dimensional finite element modelling of
the beam. Wen et al. [12] presented an analytical model of a two-
layered composite beam, taking partially into account the shear effect.
The model provided for the longitudinal displacements in both layers
separately, in the direction normal to the beam axis. The governing
equations were derived based on the principle of virtual work and then
solved with the use of a Navier type solution technique. The results so
obtained were compared to the previously published ones and to the
results coming from numerical analyses. Časa et al. [13] developed a
new mathematical model allowing to analyze the mechanical behaviour
of two-layer composite beams, with consideration of interlayer slips
between the layers. A cantilever 3D two-layer timber-concrete compo-
site beam was then analyzed for various kinematic and equilibrium
conditions. It was ascertained that the deformations in transverse and
lateral planes of the beam are mutually independent. Hou and He [14]
dealt with dynamic and static response of the two-layer partial inter-
action composite beams. The principle of virtual work allowed to de-
velop a specialized finite element designed for the analysis. The nu-
merical results obtained this way evidenced efficiency of the proposed
method. It turned out significantly better in predicting the static re-
sponse, natural frequencies and higher order free vibration beam modes
than classic FEM method. Magnucki et al. [15] assumed a nonlinear
hypothesis of planar cross-section deformation with a view to consider
the behaviour of a beam with unsymmetrical variation of its mechanical
properties. The Hamilton’s principle allowed to derive two differential
equations of motion. Solution of these equations provided the results
illustrating the bending, buckling and free vibration of the beam. The
additionally developed FEM model of the beam verified accurateness of
the approach. Magnucki et al. [16] studied an unsymmetrical sandwich
beam, assuming that the thicknesses and mechanical properties of the
beam faces are different. The classical broken-line hypothesis served as
a basis for formulation of the equations of motions. The values of de-
flection, critical force and natural frequency calculated for several
variants of the beam were positively verified by FEM computation.
Polus and Szumigala [17] presented the methods for calculating the
bending resistance and the stiffness of aluminum – concrete composite
beams. Two types of connection between the aluminum beam and the
concrete slab were considered. The results so obtained were confirmed
by laboratory tests.

The subject of the study are simply supported two-layer beams of
length L, total depth h and different mechanical properties (E1, ν1, E2,
ν2), thicknesses (h1, h2) and widths (b1, b2) of the layers (Fig. 1a). The
beams are subjected to uniformly distributed load of intensity q
(Fig. 1b). The bending problem of these beams with consideration of
the shear effect is analytically and numerically FEM studied.

The objective of the study is formulation of analytical model of the
two-layer beams (having different widths b1 and b2) with consideration
of the original nonlinear hypothesis-theory of deformation of the planar
cross sections, derivation of equilibrium equations and their solution.
Both layers are made of different isotropic materials. The b2/b1 ratio
varies from 1/6 (T-beam) to 1 (rectangular cross section). Moreover,
the FEM numerical calculations and the comparative analysis of the
results are carried out.

2. Analytical model of the two-layer beam

The classical Bernoulli-Euler beam theory is commonly used in
solving the problems of beam bending. It entails the fact that a planar

cross section of the beam remains planar after bending, of course in case
of a small deflection. In consequence, the shear effect is ignored, but in
long beams such an approach gives satisfactory results. However, the
problems of short beams made of different layers require more so-
phisticated assumptions. Therefore, an individual hypothesis-theory of
deformation of a planar cross section is formulated, making a basis for
development of the analytical model of the two-layer beam. Any
straight line perpendicular to the beam neutral axis takes the shape
shown in Fig. 2 after bending.

The longitudinal displacements in particular layers, according to
this hypothesis, are as follows:

• the upper layer-part (− ⩽ ⩽h y 01 1 )
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– longitudinal displacements.

• the lower layer-part ( ⩽ ⩽y h0 1 2)
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where: the deformation function of the planar cross section of the lower
layer-part
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Consequently, the strains and stresses in particular layers are as
follows:

• the upper layer-part (− ⩽ ⩽h y 01 1 )
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where: derivative of the deformation function
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where: E ν,1 1 – Young’s modulus and Poisson ratio of the upper layer-
part.

• the lower layer-part ( ⩽ ⩽y h0 1 2)
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