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A B S T R A C T

The formulation of an enriched hierarchical one-dimensional finite element suitable to analyze the rheological
behavior of thick arbitrarily laminated beams is presented. The formulation is based on the Equivalent Single
Layer (ESL) theory and was developed to allow the use of any high-order beam shear deformation theory (HBST)
in a unified approach. A generalized Maxwell model was implemented to analyze the time-dependent behavior
of the composite. The finite element employs local Lagrange and Hermitian support functions enriched with
orthogonal Gram-Schmidt polynomials and is free of shear locking. The enriched macro elements can be used
with very coarse meshes and the precision can be controlled without generating a new mesh. The formulation
has been validated with numerical examples of symmetric and non-symmetric laminated beams using the three-
dimensional finite element program PLCD.

1. Introduction

Sandwich structures are widely used as structural supporting ele-
ments due to their enhanced mechanical properties. These consist of
two thin rigid layers that support much of the flexural load and a
lightweight inner core, usually with energy dissipation capabilities.
Consequently, these layered composite laminates are well suited for
applications where vibration-induced stresses can produce problems
such as fracture, fatigue, etc. These problems can be mitigated by the
introduction of viscoelastic material core layers of different thickness
[1]. The study of the vibration and dynamic response of viscoelastic
structures and sandwich panels with viscoelastic cores has been studied
over the years. There are several models based on layerwise theories for
modelling of laminated structures with viscoelastic damping layers.

Moreira et al. [2] developed a layerwise model which can describe
the high shear pattern developed inside a thin viscoelastic soft core.
Later, they implemented a 4-node facet type quadrangular shell finite
element, where the bending stiffness of the facet shell element is based
on the Reissner–Mindlin assumptions and the plate theory is enriched
with a shear locking protection [3]. Mahmoodi et al. [4] investigated
the non-linear free vibrations of viscoelastic beams using the Kelvin-
Voigt model and a multi-scale method was used to analytically raise the
non-linear modal shapes and natural frequencies in beams. Araújo et al.
[5] presented an optimal design and parameter estimation of frequency

dependent passive damping of sandwich structures with viscoelastic
core and a viscoelastic sandwich finite element model for the analysis of
passive, active and hybrid structures [6,7], using a mixed approach, by
considering a HSDT to represent the displacement field of the viscoe-
lastic core, and a FSDT for the displacement fields of adjacent laminated
face layers. The differential transformation method (DTM) in the fre-
quency domain was employed by Arikoglu and Ozkol [1] to solve the
motion equations of sandwich-composite beams including viscoelastic
cores. Arvin et al. [8] developed a Finite Element Method (FEM) code to
study the vibration frequencies of sandwich beams constituted by ex-
ternal layers of composite material and a viscoelastic core. Moita et al.
[9] developed a finite element model for vibration analysis of acti-
ve–passive damped multilayer sandwich plates, where the elastic layers
are modelled using the classic plate theory and the core is modelled
using the Reissener–Mindlin theory. They improved this formulation
using Reddy’s third-order shear deformation theory [10]. The finite
element is obtained by assembly of N ‘‘elements’’ through the thickness,
using specific assumptions on the displacement continuity at the in-
terfaces between layers. Galupppi et al. [11] analytically solved the
time-dependent problem of a laminated beam with an intermediate
viscoelastic layer, whose response is modeled by a Prony-Series. Later,
they applied the analysis to a structure composed of elastic glass layers
joined by intermediate layers of viscoelastic polymers, under a history
of loading and unloading [12]. Optimization of active and passive
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damping using a new mixed layerwise finite element model was im-
plement by Araújo et al. [13], where results are compared with an al-
ternative optimization model, based on 3D finite elements using
ABAQUS commercial package. Ferreira et al. [14] developed a layer-
wise finite element model using a unified formulation for the analysis of
sandwich laminated plates with a viscoelastic core and laminated ani-
sotropic face layers. Liu et al. [15] formulated a layerwise differential
quadrature hierarchical finite element (DQHFE) model for the analysis
of sandwich laminated plates with a viscoelastic core and laminated
anisotropic face layers. The stiffness and mass matrices in these cases
were obtained by Carrera’s Unified Formulation (CUF) [16]. Lei et al.
[17] established movement equations for Euler-Bernoulli beams using
the Kelvin-Voigt model and the standard three-parameter viscoelastic
model with velocity-dependent external damping. Li et al. [18] ob-
tained closed form solutions for stresses and strains using the Laplace
transform for simply-supported laminated functionally graded (FG)
beams, considering viscoelastic interlayers. Dynamic behavior of
sandwich composite beams using different shear deformation theories
to formulate diverse layer-wise models (LW), implemented through
FEM were studied by Loja et al. [19]. Kpeky et al. [20] proposed the
modeling of sandwich structures with a soft core using a finite linear-
hexahedral solid element, combining Automatic Differentiation (AD)
with the Asymptotic Numerical Method (ANM). A multiobjective ap-
proach for optimization of passive damping for vibration reduction in
sandwich structures is presented by Madeira et al. [21,22], for max-
imization of modal loss factors and minimization of weight of sandwich
beams and plates with elastic laminated constraining layers and a vis-
coelastic core, using the Direct MultiSearch (DMS) solver. Nguyen et al.
[23] implemented a triangular finite element that uses the Laplace
transform for laminated viscoelastic composite plates based on an ef-
ficient higher order zigzag theory (EHOPT). Huang et al. [24] presented
two integral finite elements, with compression and shear mechanisms
of damping, to model sandwich type structures with soft core. Li et al.
[25] developed a semi-analytical method to investigate the natural
frequencies and modal shapes of a system of beams interconnected by a
viscoelastic layer. The work of Latifi et al. [26] deals with geometrically
non-linear transient analysis of sandwich beams with viscoelastic cores
and composite laminated external layers. The non-linear dynamic in-
stability of three-layer composite beams with a viscoelastic core sub-
jected to combined lateral and axial loads was also studied by the same
authors in Ref. [27]. Guo et al. [28] analyzed a sandwich beam where
monolithic viscoelastic core was replaced by two periodically alter-
nating viscoelastic ones to improve the flexural-wave attenuation per-
formance. This work was later extended by Sheng et al. [29] to consider
plate sandwich structures. Mustafa [30] studied laminated Timoshenko
beams with two identical external layers bounded by a thin adhesive
layer. Zhai et al. [31] analyzed the free vibration of five-layer sandwich
plates with two viscoelastic cores using the first order shear deforma-
tion theory (FSDT); the motion equations were derived using Ha-
milton's principle and solved by the closed-form Navier method. It
should be noted that he inner-core damping layers undergo strong shear
strains, due to the relative motion of the layers. For this reason, it is
important to use an appropriate kinematics that considers the effect of

the shearing through advanced structural theories [32]. Asik and
Tezcan [33], Bennison and Davies [34] and Ivanov [35], among others,
showed that an appropriate consideration of the viscoelastic interlayer
shear behavior is essential for an accurate modeling allowing an effi-
cient design.

The formulation of an enriched hierarchical one-dimensional finite
macro-element suitable to analyze the rheological behavior of thick
arbitrarily laminated beams, including soft-core sandwich ones, is
presented. The formulation is based on the Equivalent Single Layer
(ESL) theory which is well suited in design stages or optimization
processes where repetitive computations and a good balance between
accuracy and resolution speed are required. The formulation is based on
the Equivalent Single Layer (ESL) theory and was developed to allow
the use of any high-order beam shear deformation theory (HBST) in a
unified approach. A generalized Maxwell model was implemented to
analyze the time-dependent behavior of the visco-elastic layers. The
finite element employs local Lagrange and Hermitian support functions
enriched with orthogonal Gram-Schmidt polynomials. The obtained
finite element is free of shear locking and thin beams can be studied
with the same formulation without resorting to the use of reduced in-
tegration [32,36]. The formulation has been validated with numerical
examples of symmetric and non-symmetric laminated beams using the
three-dimensional finite element program PLCD.

2. Formulation of the mechanical problem

2.1. Kinematics of deformation

A laminated beam of length L, width b and total thickness h, as
shown in Fig. 1 is considered. An orthogonal Cartesian axis system
x y z( , , ) is used, with the axis x oriented along the longitudinal axis of
the beam, the plane −x y coincides with the middle plane and the z
axis is perpendicular to the middle plane, resulting in a three dimen-
sional domain where ⩽ ⩽x L0 ,− ⩽ ⩽b y b2 2,− ⩽ ⩽h z h2 2. The
laminated beam is composed of N layers of different elastic and vis-
coelastic materials. The index k denotes the layer number from the
bottom to the top of the beam, therefore the layer −k th lies between

⩽ ⩽−z z zk k1 and its thickness is h k( ). The kinematics of the laminated
beam is characterized by the displacements of its midline and occurs in
the plane −x z. The components of the displacement field are obtained
using different shear deformation theories in the frame of ESL theories,
adopting the following general form:
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where u u u, ,1 2 3 are the displacements of any material point in the beam
domain along the axes x y z, , , respectively; u w, are the longitudinal (x
axis) and transverse (z axis) displacements of generic points located on
the beam longitudinal axis; ϕ is the additional rotation of the normal to
the midplane; f z( )i , =i n1, ..., represents the shape function that de-
termine the distribution of strains in the beam thickness for different

Fig. 1. Multilayered composite beam. Geometry and coordinate system.
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