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A B S T R A C T

This paper presents Best Theory Diagrams (BTDs) constructed from non-polynomial terms to identify best shell
theories for bending analysis of cross-ply single skin and sandwich shell panels. This structure presents a constant
radii of curvature. The shell theories are constructed using Axiomatic/Asymptotic Method (AAM). The different
shell theories are described using the Carrera’s Unified Formulation. The governing equations are derived from
the Principle of Virtual Displacement (PVD). Navier-Type closed form solution is used for solving the bending
problem of simply supported doubly curved shell panels subjected to bi-sinusoidal transverse pressure. The BTDs
built from non-polynomial functions are compared with Maclaurin expansions. Spherical shell panels with
different layer-configurations are investigated. The results demonstrated that the shell models obtained from the
BTD using non-polynomial terms can improve the accuracy obtained from Maclaurin expansion for a given
number of unknown variables of a displacement field.

1. Introduction

Shells have increased structural stiffness compared to plates. Shells
have excellent load capability due to its curvature and it is attractive
shape geometry in the industry. On the other hand, fiber composite [1]
provide significant improvements in property strength and stiffness
over conventional metal alloys. Goraj [2] divided the advantages of
composite over classical metals in four characteristics: weight reduc-
tion, reduced cost. Those may be the reasons why composite shell
structures are widely used in many industries, such as, aerospace, au-
tomobile, mechanical, civil and marine.

The abovementioned industries and others need simplified models
for calculating stresses and displacement during the design process,
manufacturing, monitoring the performance of the structure in opera-
tion, and for decision making in any other kind of circumstances. 3D
elasticity solutions need a large amount of degree of freedom and high
computational cost. In order to reduce the computational cost, many
researchers developed 2D theories for modeling the stresses and dis-
placements of shell structures over the last seventy years. The first
approach was given by Love [3] who extended the Kirchhoff hypothesis
valid for thick plates to shell structures. The work by Love was the
foundation for the classical shell theory (CST), this theory was devel-
oped in several classical textbooks [4–7]. The CST neglected the

transverse shear and transverse normal stresses and this issue generates
inaccuracies for thin shells. The introduction of transverse shear stress
was introduced by Hildebrand et al. [8] who proposed the first order
shear deformation theory (FSDT). The limitation of this theory is re-
lated to the necessity of a shear correction factor [9]. Higher order
shear deformation theories (HSDT) were stablished to reduce the in-
accuracies of FSDT and CST. The displacement field of HSDT normally
is based on the quadratic, cubic and higher order expansions [10–12] or
non-polynomial robust expansions [13–15] along the thickness direc-
tion. A generalized way to write HSDT can be achieved by using a
Unified Formulation (UF) [16–17]. HSDT and UF can be formulated as:
Equivalent single layer (ESL) and layer-wise (LW) theories [18–19]. The
ESL approach considered a multilayered shell as a single lamina. The
LW approach each lamina is considered separately, therefore, the dis-
placements and stresses distribution present quasi-3D capabilities.
However, the computational cost of LW is high in comparison with ESL
models.

The refined models presented in this paper follow the strategy for
compactness introduced by Carrera’s Unified Formulation (CUF) [20].
The governing equations are written in term of a few fundamental
nuclei which do not formally depend on the order of expansion used in
the thickness direction and on the description of the expansion variable.
CUF can be used for solving acoustic problems [21], piezo-electric [22]
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and dynamical rotating structures [23]. Recently, several researchers
[24–27] introduce non-polynomial functions along CUF to build new
plate models. In the author’s best knowledge, this is one of the first
paper that introduces a unified theory for shells structures with non-
polynomial expansion. This paper used the Navier closed form solution
to solve the highly couple differential equations that govern a cross-ply
laminated composite shells.

Axiomatic/asymptotic method (AAM) was developed by Carrera
and Petrolo [28]. This strategy allows recognizing the effectiveness of
each displacement variables of an arbitrary refined shell theory. The
AAM method was applied for solving functionally graded structures
[29], isotropic and laminated shell [55], and piezo-electrical problems
[22,30]. The graphical representation of AAM method is presented
using the Best theory diagram (BTD) [30] which, for a given problem,
the computational cheapest mathematical model for a given accuracy
can be read. Yarasca and co-authors [31,57] presented an effective N-
objective optimization method using genetic algorithm considering
displacement and stresses as output parameters. BTD were given con-
sidering Maclaurin, high order zig-zag, trigonometrical, exponential
and hyperbolic expansion terms in order to study the importance of
such expansion functions in the structural response. The authors found
remarkable BTDs.

Tornabene et al. [32] used the differential quadrature technique and
the Newton-Raphson iteration to obtain the solution of static problems
related with laminated composite plate and shells resting on nonlinear
elastic foundation. Viola et al. [33] presented a generalized nine-
parameter HSDT for studying the static response for different doubly-
curved laminated composite shell and panels. Wang et al. [34] pre-
sented linear vibration analysis of functionally graded carbon nanotube
reinforced composite doubly-curved panels and shells of revolution
with arbitrary boundary conditions using a novel semi-analytical
method. Brischetto [35] proposed an exact 3D solution for the study of
plates and shells. The solution is based on layer-wise approach and the
second order differential equations are solved using a redouble of
variable and the exponential matrix method. D’Ottavio [48] used the
Sublaminate Generalized Unified Formulation which main idea is to
group the plies into a number of smaller units called sublimated, each of
them is characterized by an independent, variable-kinematic theory for
bending of sandwich plates.

In this paper, a unified formulation is used to evaluate different
hybrid reduced shell theories for laminated and sandwich shells.
Consequently, BTDs are obtained using the average of error of the
calculated error of three different displacements (u u u, , z) and six
different stresses ( , , , , ,z z zz) by the multi-point criteria for
stresses and displacements used by Carrera et al. [55]. BTDs are cal-
culated for each non-polynomial model and are compared with Ma-
claurin expansion BTDs.

The paper is organized as follows: Section 2 describes the compact
unified non-polynomial shear deformation formulation for shells; the
governing equations and closed form solutions are presented in Section
3. The procedure for stress recovery for transverse shear and normal
stress is outlined in Section 4. Axiomatic/asymptotic method is de-
scribed in Section 5. The results and discussions are presented in
Section 6. Finally, the conclusions are given in Section 7.

2. Compact non-polynomial shear deformation for shells

The coordinate system and the graphical representation of a mul-
tilayered spherical shell is presented in Fig. 1. The integer “k” denotes
the layer number. The in-plane coordinates are denoted as " " and " ",
while the thickness coordinate is represented as “z”. The radii of cur-
vatures along the mid-surface domain are R" " and R" ".

In the framework of a compact and unified formulation [20], the
shell displacement can be described as:

=u F z u( ) ( , );z( , , )

= =u F z u s N( ) ( , ); , 0, 1, 2, 3, ,z s s( , , ) (1)

where u is the displacement vector denoted as u u u( , , )z whose dis-
placements are along , and z reference axes and F and Fs are the
shear strain shape functions. The displacement variables is denoted as
us and its variation as u . The order of expansion is represented as N.

In ESL scheme, the multilayer shell is considered as a single
equivalent lamina. The ESL theory is denoted as EDN. If Maclaurin
expansion is used, ED4 is:
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In addition to the classical Maclaurin polynomial expansion, this
paper uses three different non-polynomial fields: trigonometrical ex-
pansion (trig.), hyperbolic expansion (hyp.), and exponential expansion
(exp.), see Table 1. The principal aim of this work is to evaluate several
shear strain shape functions proposed in the literature and use them for
creating different Best Theory Diagrams for shells. Table 2 presents
several shear strain shape functions used in this publication.

The displacement field can be also written in a Layer-wise approach
(LW), the main feature is that in LW scheme each layer of the shell
structure is modelled separately as follows:

= = + +

= =

u F z u F u F u F u s

t b r r N

( ) ( , ) ( ) ( ) ( ) ,

, , ; 2, 3, ,
s s t k t

k
b k b

k
r k r

k

(3)

where “b” and “t” denoted the bottom and the top of the shell panel.
The thickness functions are denoted as Fs and are defined by the use of
Legendre’s polynomials =P P ( )j j k of j order. It is recalled that the LW

theories are written in local dimensionless coordinates =k
z
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The acronym for this theory is denoted as LDN, where L denoted
Layer-wise approach, D for the Principle of Virtual Displacements, and
N is the order of expansion.

3. Governing equations and closed form solution

The stress ( )k and strain ( )k are grouped as follows:
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The subscript “p” denotes in-plane component and “n” refers to the
out-plane component. The strain linear relations are described as
follow:
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where “H ” and H" " are denoted as the metric coefficients and are
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